LHC Collimation Controls Review Geneva, 18th December 2006

Collimator Control Application from the Control Room

Stefano Redaelli, AB-OP

for the COCOST team

Acknowledgments: M. Lamont, J. Wenninger, SPS-OP crew,

BLM team, ABP collimation team

Overview of my talk

1. Introduction

- **2. Implementation of LHC software**
- **3. Control through the LSA TRIM**
- 4. Performance issues
- **5. Conclusions**

Introduction

Architecture of top-level collimator controls (Eng. Spec. May 2006, to be published)

<u>Beam tests 2006</u>: focus on Single Collimator Control, discrete settings of absolute positions (not yet time-functions)

... a little part of the overall architecture BUT crucial for the LHC!

Major role in the system commissioning: collimation tuning will rely on manual beam-based alignment until we gain experience and setup automatic procedures

Introduction

Architecture of top-level collimator controls (Eng. Spec. May 2006, to be published)

<u>Beam tests 2006</u>: focus on Single Collimator Control, discrete settings of absolute positions (not yet time-functions)

... a little part of the overall architecture BUT crucial for the LHC!

Major role in the system commissioning: collimation tuning will rely on manual beam-based alignment until we gain experience and setup automatic procedures

Introduction

Architecture of top-level collimator controls (Eng. Spec. May 2006, to be published)

<u>Beam tests 2006</u>: focus on Single Collimator Control, discrete settings of absolute positions (not yet time-functions)

... a little part of the overall architecture BUT crucial for the LHC!

Major role in the system commissioning: collimation tuning will rely on manual beam-based alignment until we gain experience and setup automatic procedures

Project CERN

Beam-based alignment with BLM s

LHC Collimation Project

Beam-based alignment with BLM s

Basic requirements for the beam-based alignment:

On-line monitoring of collimator jaw positions / gaps (~ 1 Hz)

- •On-line monitoring of collimator jaw positions / gaps (~ 1 Hz)
- ·On-line monitoring of the dedicated BLM's close to the collimator (~ 1 Hz)

- •On-line monitoring of collimator jaw positions / gaps (~ 1 Hz)
- ·On-line monitoring of the dedicated BLM's close to the collimator (~ 1 Hz)
- Monitor the switch status (10 per collimator)

- On-line monitoring of collimator jaw positions / gaps (~ 1 Hz)
- ·On-line monitoring of the dedicated BLM's close to the collimator (~ 1 Hz)
- Monitor the switch status (10 per collimator)
- Efficient tool to send settings, various coordinate systems (single corners, average, angles)

- On-line monitoring of collimator jaw positions / gaps (~ 1 Hz)
- •On-line monitoring of the dedicated BLM's close to the collimator (~ 1 Hz)
- Monitor the switch status (10 per collimator)
- Efficient tool to send settings, various coordinate systems (single corners, average, angles)
- Flexibility of plotting tools (lin/log axes, choose BLM, choose left/right jaw, adjust calibrations, ...)

Collimator software GUI

Setting panel

SR. Coll Controls Rev. 18/12/2006

5

LHC Collimation

Project

Setting panel

Different coordinate systems (single corners, average + angle) All conversions done at toplevel -> coherent set of settings to the lower levels (fully compatible with LSA TRIM!)

"Repeat" functionality, "cancel last", "stop": efficient control during routine operation

Detailed sensor readout panel

On-line display

On-line display

On-line display

✓ LogY

Additional features

Additional features

LHC application: SPS implementation

LHC application: SPS implementation

LHC application: SPS implementation

Final LHC implementation

Final LHC implementation

Final LHC implementation

SR, Coll Controls Rev. 18/12/2006

SPS test 2006

- LSA TRIM \rightarrow control FESA devices at the LHC
- <u>It provides</u>: traceability (setting history), function generation/editing within machine contexts, MCS functionalities!
- Collimator control through TRIM was setup !
- All the required infrastructure links were setup: LSA database, setting generation, drive-hardware, ... *Thanks: D. Jacquet, M. Lamont, L. Normann. J. Wenninger*
- Next step: call TRIM within our application (*TRIM-CLIENT*). *Basically there but not yet tested*
- Our setting philosophy compatible with TRIM: 4 absolute positions, conversions done at top level
- Potential issue of response time?

SPS test 2006

- LSA TRIM \rightarrow control FESA devices at the LHC
- <u>It provides</u>: traceability (setting history), function generation/editing within machine contexts, MCS functionalities!
- Collimator control through TRIM was setup !
- All the required infrastructure links were setup: LSA database, setting generation, drive-hardware, ... *Thanks: D. Jacquet, M. Lamont, L. Normann. J. Wenninger*
- Next step: call TRIM within our application (*TRIM-CLIENT*). *Basically there but not yet tested*
- Our setting philosophy compatible with TRIM: 4 absolute positions, conversions done at top level
- Potential issue of response time?

Snapshot of LSA TRIM with collimator settings

Snapshot of LSA TRIM with collimator settings

<u> </u>	Trim Ed	ditor v2.15.1b		· -
🖲 SPS 🤣				
Supercycles	ParticleTransfer	Parameter selection - SPSRING		
FT-3CNGS_TESTER (resident)	SPSRING 👻	System	CSSInterface.SPS.TEST/RequiredAbsolutePositi	Field
FT-MDLHC_L14400_V1 (resident) LHC25.92-450_L28800_TESTER (residen)	Cycle Beam Process	EXTR OCTUPOLES		left_downstream left_upstream
FASTLHC_FT500_L8400_V6	FASTLHC_FT500_L8400 (0->8400)	GENERATION		right_downstream
FASTLHC_LSS46_L16800v1		LATTICE MEASUREMENT		right_upstream
FT-3CNGS-MD_V1		LHC COLLIMATORS		
FT-3CNGS_5MSTESTER		MOMENTUM		
FT-3CNGS_HWTEST		DE Hadran 200		
FT-3CNGS_V1		RF-Hadron200		
FI-CNGS-MD_L21600_V2		RE-IONS		
	Select All	T-1013	Hide Field(s)	
			Setting	Part
			Make	_
			Value	•
				2
				AN

ParticleTransfer	Parameter selection - SPSRING		
SPSRING	System	CSSInterface.SPS.TEST/RequiredAbsolutePositi	Field
	DAMPER_PHASE		left_downstream
Cycle Beam Process	EXTR OCTUPOLES		left_upstream
FASTLHC_FT500_L8400 (0->8400)	GENERATION		right_downstream
	LATTICE MEASUREMENT		right_upstream
	LHC COLLIMATORS		
	MOMENTUM		
	OCTUPOLES		
	RF-Hadron200		
	RF-Hadron800		
Select All	RF-IONS 💌	Hide Field(s)	

	Timebase:
	⊖ SC ● Cycle
Console	
14:20:50 Serre could not find on one null cotting	

Snapshot of LSA TRIM with collimator settings

_		Trim E	ditor v2.15.1b		
333333	🖲 SPS 🤣				
S	upercycles	ParticleTransfer	Parameter selection - SPSRING		
F	T-3CNGS_TESTER (resident)	SPSRING 👻	System	CSSInterface.SPS.TEST/RequiredAbsolutePositi	Field
F	F-MDLHC_L14400_V1 (resident)		DAMPER_PHASE		left_downstream
L	HC25.92-450_L28800_TESTER (residen	Cycle Beam Process	EXTR OCTUPOLES		left_upstream
F.	ASTLHC_FT500_L8400_V6	FASTLHC_FT500_L8400 (0->8400)	GENERATION		right_downstream
E.	ASTLHC_LSS46_L16800v1		LATTICE MEASUREMENT		right_upstream
F	-3CNGS-MD_V1		LHC COLLIMATORS		
Ľ	-3CNGS_SMSTESTER		OCTUPOLES		
			RE-Hadron 200		
Ē	-SCNG5_MD 121600 V2		RF-Hadron800		
Ŀ		Select All	RF-IONS	Hide Field(s)	
				Setting	j Part
				Value	e 🔻
					Trim

ParticleTransfer	Parameter selection - SPSRING		
SPSRING -	System	CSSInterface.SPS.TEST/RequiredAbsolutePositi	Field
Cycle Beam Process FASTLHC_FT500_L8400 (0->8400)	DAMPER_PHASE EXTR OCTUPOLES GENERATION LATTICE MEASUREMENT LHC COLLIMATORS MOMENTUM OCTUPOLES RF-Hadron200 RF-Hadron800		left_downstream left_upstream right_downstream right_upstream
Select All	RF-IONS	Hide Field(s)	

Overview of my talk

1. Introduction

- 2. Implementation of LHC software
- 3. Control through the LSA TRIM
- 4. Performance study
- **5. Conclusions**

Reminder on collimator hardware

- 4 LEP stepping motors, one per jaw corner
- 4 resolvers count the motor steps
- 4 potentiometers measure the actual jaw position
- 2 LVDT's provide direct gap measurements
- 10 switches prevent breaking the mechanics
- Switch positions are our *absolute reference*

Reminder on collimator hardware

- 4 LEP stepping motors, one per jaw corner
- 4 resolvers count the motor s
- 4 potentiometers means the actual jaw position
 2 LVDT's offered rectron measurements
- 10 switches breaking the mechanics
- Switch positions are our absolute reference

Motors lost knowledge of absolute position

• Known to be a potential issue with LEP stepping motors.

The count of motor steps does not provide direct jaw measurements - errors add up!

LHC Collimation

Project

- Total error up to hundreds of microns
- This caused problems during the MD: demanded settings were not up to date!
- SPS data can be corrected off-line for detailed studies

Motors lost knowledge of absolute position

• Known to be a potential issue with LEP stepping motors.

The count of motor steps does not provide direct jaw measurements - errors add up!

LHC Collimation

Project

- Total error up to hundreds of microns
- This caused problems during the MD: demanded settings were not up to date!
- SPS data can be corrected off-line for detailed studies

LHC Collimation Motors lost knowledge of absolute position

 Known to be a potential issue with LEP stepping motors.

The count of motor steps does not provide direct jaw measurements - errors add up!

- Total error up to hundreds of microns
- This caused problems during the MD: demanded settings were not up to date!
- SPS data can be corrected off-line for detailed studies

Solutions for the LHC are implemented:

- New motors are much better! (proven by TT40 test, see Roberto's talk)
- Precise position sensors will detect the error. Do not rely on switch positions
- In the software: implement the feature of "update motor settings"

Switch performance

SR, Coll Controls Rev. 18/12/2006

17

did not see that feature in 2004!

Time delays between acquisitions

Time delays between acquisitions

Solution for the LHC:

- Time-stamp the data at the low-level!

During the MD, the position measurements published by the middlelevel showed time shifts with respect to the nominal facq We found a correlation with the frequency of setting requests (work load of middle level)!

Statistics of time delays

LHC Collimation

Project

Statistics of time delays

SR, Coll Controls Rev. 18/12/2006

Time delays for BLM acquisition

Time delays for BLM acquisition

Time delays for BLM acquisition

Conclusions

- SPS beam tests provided important validation of our critical choices for the collimator top-level control *First successful implementation within FESA/LSA environments*
- Single collimator control basically ready for the LHC
- Collimator control through the LSA-TRIM also tested. Further investigations of its performance are required
- **We collected a significant amount of useful data**
- What we have learnt:

Performance limitations of top level - under investigation Synchronization/timing can be an issue, mainly for off-line analyses

- The hardware of SPS prototype not good enough for LHC Motor settings lost accuracy and we could not easily detect it
- Setup a test bench with final hardware for systematic performance checks within final controls environment

Different time response is induced by the work-load on the low level to process the demanded positions!

Time issues

