Review on collimator movement with stepping motors

Mechanical design and SPS results

O. Aberle

4th November 2005

Design work from many colleagues in TS/MME, Stefano Redaelli for the SPS test results Photos from P. Francon

Overview

- Mechanical design
- Motion of collimator jaws
- Auto retraction
- SPS tests
- Results from SPS tests
- Results on Prototype No. 3
- Conclusions

Mechanical design

Motion of collimator jaw

Torque meter

Review on collimator movement with stepping motors

Motion of collimator jaw

05.11.05

Review on collimator movement with stepping motors

Motion of collimator jaw

Auto retraction, Angle limitation

Return spring

Rigid bar Rack and Pinion Pin hole/slot (3mm)

Auto retraction, Angle limitation

Auto retraction

- One system: 2 sets of springs (dia. 5 and 6.3 mm) available
- for 3 types of collimators (CFC, CU and W jaw material)
- \cdot for 4 different orientations (0, 90, 45 and 135 °)
- Works in case of power cut (condition: Mechanics Ok)
- Tested vertically with 15 kg loaded (Tungsten case)
- Limitations: To start movement, minimum spring pre-load needed
- Back up: One motor can drive the jaw out against the angle limitation system

Angle limitation

- Given by the mechanical play (3 mm on 1 m jaw length)
- Blocks the angle (with powered motor)

Review on collimator movement with stepping motors

Results from SPS tests

Calibration of single motor	 Verify correct functioning of
(test bench)	motor and resolver Verify step/resolver calibration
Calibration with open	 Calibration of jaw displacement ver
collimator	motor setting / resolver readings Measure mechanical plays Measure minimum jaw step
Calibration at the metrology	Provide the absolute reference with

(with close collimator)

with respect to the beam trajectory with final sensor configuration

versus

Measurements at the metrology

Absolute error with this setup $\approx 3 \ \mu m$

Review on collimator movement with stepping motors

Results from SPS tests

- ✓ Potentiometers: Resolution \approx 40-50 µm (some sensor better, \approx 20 µm)
- ✓ Resolvers: absolute error \approx 80 µm (expected 5 µm). For motor control (lost steps?)
- ✓ LVDT's: Resolution \leq 15 µm in laboratory tests. (re-calibrations regularly needed - feasible for > 500 sensors in radiation environment?)
- Capacitive sensor: Resolution $\leq 1 \, \mu m$; not radiation resistant
 - Mechanical play:

40 μ m for SPS prototype \leq 10 μ m for TT40 prototype 5 μ m

• Minimum step for jaws = $5 \mu m$

Preliminary results from Prototype 3

Review on collimator movement with stepping

Preliminary results from Prototype 3

Conclusions

- o Reproducibility of the jaw position:
- o Mechanical play:
- Absolute position knowledge in laboratory: (full mechanical chain)
- o Alignment in tunnel:

Each axis might need a calibration curve

<10 μm ≈ 20 μm ≈ 100 μm = 0.5 σ (LHC, top energy) 0.1 to 0.2 mm

Open points: Test the different orientations Life time/ cycling Effect vacuum Determine safety margin for each type and orientation

Risks: Alignment screw/motor, wear and aging, limitation in auto-retraction, Safety factor of 2 desirable