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Abstract 

An analytical method to determine the transient stresses induced by a fast extracted 
proton beam hitting off-axis a graphite rod was fully developed. An exact solution for 
the temperature field was first determined, by means of Fourier-Bessel expansions 
Quasi-static thermal stresses were then computed as a function of the calculated 
temperature distribution, making use of Goodier’s method for the thermoelastic 
problem. Finally, the contribution of dynamic stresses due to longitudinal and bending 
waves was also determined by using mode-summation modal analysis.  
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1. INTRODUCTION 

The CNGS project consists in producing a neutrino beam at CERN and sending it 
towards the Gran Sasso INFN laboratory. A beam of this type is generated from collisions of 
protons in a beam with protons and neutrons in graphite target, focussing the particles produced 
(pions and kaons in particular – secondary particles neutrino parent) in the desired direction 
(Figure 1-1).  

A 400 GeV proton beam will be extracted from the SPS accelerator. This proton beam 
will hit a target a few meters downstream from the extraction point (BA4). 

The CNGS target will consist of a series of small graphite cylinders1. The size of the 
target has been chosen so that it will provide as many secondary particles as possible. The 
graphite rods must absorb the great heat and thermo-mechanical shock due to the energy 
deposited by the proton beam; the target must therefore be cooled with a jet of high-pressure 
helium gas in a closed circuit. 

The particles produced in the target then enter a system of magnetic horns, which will 
focus positive particles with a mean energy of 35 GeV and defocus the negative particles.  

The target should be dimensioned such that almost all incident protons interact but, at 
the same time, cause as little absorption or scattering of the secondary particles as possible. 

 
Figure 1-1 CNGS secondary particle production scheme 

2. TARGET MAIN PARAMETRES 

Every graphite rod is simply supported at the extremities and has the following 
geometrical dimensions: 

Radius:       R = 2.5 mm 

Length:      L = 100 mm 

Each rod is submitted to a high intensity series of proton “pulses”. Each pulse lasts 10 
microseconds and its power density is constant over such a time. Pulses are emitted with a 
period of 50 milliseconds.  

The energy deposited by the beam has a Gaussian distribution over the rod section and 
is supposed constant over the length. The beam is eccentric with respect to the rod axis. We 

                                                           
1 In a cast aluminium target container 11 rods of graphite, 10 cm long and 5mm in diameter each, form a 2m long 
target array.  
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assume here the eccentricity η is positive when measured downward on the vertical y-axis 
(θ=270º) 

Extraction time:    t ssp µ10=  

Extraction cycle period:   tb = 50 ms 

Number of incident protons:   protN p
13105.3 ⋅=

Maximum energy density:   
protkg

JEdMax 1010
991.245

⋅
=   

Energy density standard deviation:  σ = 0.63 mm 

Specific energy    U  1010),(),( ×⋅= pd NrEr θθ

Maximum specific energy   
kg
JU 5

max 1061.8 ×=  

Beam eccentricity (w.r.t. rod axis)  mm5.10 ÷=η  

Graphite density:    31850
m
kg

=ρ  

Maximum power density   3
1410593.1

m
W

t
UW

s
MaxMax ⋅==

ρ  

 

The thermodynamic and mechanical properties of graphite are temperature dependent. 
Anyhow, to simplify our analytical approach, we assume these properties to be constant over 
temperature: 

Mean specific heat    
Kkg

Jcm ⋅
= 1350  

Mean thermal conductivity   
Km

Wkm ⋅
= 70  

Mean coefficient of thermal expansion:  
Km
1109.3 6−⋅=α  

Mean Young’s Modulus:    GPaE 49.10=  

Poisson’s ratio:     ν = 0.15 

 
Initial uniform temperature is 20°C. However, for sake of simplicity, as main 

parameters are supposed independent of temperature, we assume initial zero temperature. Real 
temperatures can be computed by offsetting values by 20°C. 
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3. TEMPERATURE DISTRIBUTION 

3.1 Introduction 
We want to calculate the exact temperature distribution for a non-uniform off-axis 

heating with Gaussian energy density. 
To do so we want to solve the heat conduction equation in cylindrical coordinates. 

(1) t
T

t
Q

k
T

rr
T

rr
T

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

κθ
1111

2

2

22

2

 

where Q is the thermal energy contained in the reference volume and  

(2) 
ρ

κ
m

m

c
k

=  

is the thermal diffusivity. 
In the axisymmetric case, equation (1) can be simplified by dropping the θ variable (T 

is independent of the angle θ), leading to a simpler problem [7]. Unfortunately, because of 
eccentricity, for this case both r and θ must be retained. As we are interested in temperature 
distribution after the first pulse, when heat is no longer generated inside the cylinder, the term 
in Q disappears. Equation (1) then reduces to the following diffusion problem: 

(3) 
t

trTtrT
rr

trT
rr

trT
∂

∂
=

∂
∂

+
∂

∂
+

∂
∂ ),,(1),,(1),,(1),,(

2

2

22

2 θ
κθ

θθθ
 

Terms in z are not appearing having supposed that temperature distribution is constant 
along rod axis. 

Having assumed that the Maximum energy density (burst “centre”) lies at r=η, 
θ=3π/2, the specific energy takes on the following expression: 

(4) 2

22

2
sin2

),( σ
θηη

θ
rr

MaxeUrU
++

−
=  

3.2 Initial and boundary conditions 

Assuming no heat diffusion process takes place during the extraction time, the initial2 
temperature distribution is given by: 

(5) 
mc
rUrTrT ),(),()0,,( 0

θθθ ==  

Maximum temperature can be immediately calculated: 

(6) C
c

U
T

m

Max
Max º8.6370 ==  

                                                           
2 We assume here that time t=0 corresponds to the end of the extraction time. This assumption will be modified for 
the dynamic analysis. 
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The boundary condition stems from the hypothesis of adiabatism, which can be 
retained since time constants for this phenomenon are very short. 

(7) 0),,(
=

∂
∂

r
tRT θ

 

Equation (7) states that the temperature gradient on the outer surface is zero, as 
required by the adiabatic hypothesis. 

The problem would be dramatically simplified if we could separate the three problem 
variables: r, θ, t. To do so, we replace the initial temperature distribution given by eq.(5), with 
its Fourier-series expansion: 

(8) 

 

∑ ∑
∞

=

∞

=
+ =++=

0 0
1220 )()()12sin(2cos),(

k n
nnkk HrakakarT θθθθ

where an are the expansion coefficients, function of r. Only even terms are present in 
the series since temperature distribution is symmetric with respect to y-axis. For our analysis, 
the series can be truncated. It can be shown that 8 terms (kMax=3, nMax=7) are sufficient to 
closely reproduce a gaussian distribution. 

3.3 Thermal analysis 

Thanks to previous assumptions, we may assume that the function T(r,θ, t) can be 
reduced to the following form: 

(9) ∑ ⋅⋅=
n

nnn HtGrFtrT )()()(),,( θθ  

Where Hn is the harmonic term defined in equation (8): 
Expression (9) must satisfy diffusion equation (3). 
Making use of separation of variable method, we can obtain a solution of the following 

form [1]: 

(10)  ∑∑ ⋅⋅= ⋅⋅−

n
n

s

t
snnsn HerJCtrT sn )()(),,(

2
,

,, θλθ λκ

where Jn is a Bessel function of the first kind of order n, Cn,s are numerical coefficients 
obtained from the initial condition (5) and λn,s are the eigenvalues of the problem obtained by 
the application of the adiabatic condition (7). 

3.4 Results 
The thermal analysis has shown several important aspects:  

1. Final uniform temperature slightly decreases when the eccentricity is increased. 
Assuming initial temperature is 0, final temperature is 81ºC for η=0 and 74.7ºC 
for η=1.5mm. This is due to the higher energy lost when eccentricity augments. 

2. The time necessary to reach thermal equilibrium significantly rises with 
eccentricity ( ). For η=0, the time to reach a maximum temperature Figure 3-2
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gradient of 1ºC is 0.093s while for η=1.5mm it becomes 0.364s, i.e. 4 times as 
much. The rate of increase of this time is initially very sharp, and for 
η=0.5mm, it is already 0.292s. 

3. Given the time necessary to reach thermal equilibrium, the effects of one burst 
have not waned when next one takes place. Since thermodynamic and 
mechanical parameters are supposed constant, one can compute thermal field 
by simple superposition 

As one could expect, when eccentricity is zero, these results perfectly match those 
obtained for the axially symmetric study [7]. 
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

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π

2
⋅, t,




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2
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



0.4 sec⋅10 6− t  
Figure 3-1 Temperature distribution as a function of time (η=1.5mm) 
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Figure 3-2 Time required to reach thermal equilibrium (∆T≤1ºC) as a function of eccentricity 
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4. QUASI-STATIC STRESSES 

4.1 Introduction 
Calculation of quasi-static stresses is not as straightforward as it is in the case of 

axisymmetric distribution [7]. One possible approach is to make use of Goodier’s method [2], 
[3] applied to the plain-strain case (hypothesis of a long cylinder). According to this method, 
stress components are calculated from the superposition of two effects: 1) stresses arising from 
the application of a displacement potential ψ(r,θ, t) which satisfies the thermoelastic equation, 
but not the mechanical boundary conditions (free-boundary), 2) stresses due to isothermal 
pressure loads applied on the outer surface to restore the free-boundary condition.  

It can be shown that, in the case of pure heat conduction, the general thermoelastic 
equation is automatically satisfied if the displacement potential ψ is a solution of the following 
equation: 

(11) T
t

ακ
ν
νψ

−
+

=
∂

∂
1
1

 

where α is coefficient of thermal expansion. 
Since T becomes uniform for ∞→t , ψ can be immediately calculated: 

(12) AH
erJC

tr
n

n
s sn

t
snnsn

sn

+
⋅

−
+

−= ∑∑
⋅⋅−

)(
)(

1
1),,( 2

,

,,

2
,

θ
λ

λ
α

ν
νθψ

λκ

 

where A is a generic constant of integration, not affecting the displacement field. 
Once ψ is known, plane displacements components in radial and tangential direction, 

deriving from this potential, u  and ′ v′ 3 can be easily found by means of the following 
relations: 

(13) 

θ
ψ

ψ

∂
∂

=′

∂
∂

=′

r
v

r
u

1
 

Subsequently, strain and stress components, zrr στσσ θθ ′′′′  and   , , , can be calculated 
from general cinematic relations for two-dimensional problems and Hooke’s general law when 
εz=0 [2]: 

(14) 

r
v

r
vu

r

v
rr

u
r
u

r

r

′
−

∂
′∂

+
∂

′∂
=′

∂
′∂

+
′

=′

∂
′∂

=′

θ
γ

θ
ε

ε

θ

θ

1

1
 

                                                           
3 The axial component is zero according to the initial plain-strain hypothesis. 
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(15) 

( ) ( )
( ) ( )
( )

θθ

θ

θθ

θ

γτ

ασσνσ

αεσσνσ

αεσσνσ

rr

rz

zr

rzr

G

TE

TE

TE

′=′

−=′+′−′

−′=′+′−′

−′=′+′−′

 

As mentioned above, the stress distribution calculated from the displacement potential 
satisfies the thermoelastic equation, but not the boundary condition, requiring zero-forces on the 
external surface. Invoking the principle of superposition, we now add a pressure field removing 
non-zero forces on the rod surface, thus restoring the correct boundary conditions. To do so, we 
make use of the Michell’s formulation of the Airy stress function φ(r,θ, t) in polar coordinates, 
applied to an ordinary plain-strain problem [2]. Once φ(r,θ, t) is known, stress components 

θθ τσσ rr ′′′′′′  and , ,  can be calculated from the following expressions: 

(16) 









∂
∂

∂
∂

−=′′

∂
∂

=′′

∂
∂

+
∂
∂

=′′

θ
φτ

φσ

θ
φφσ

θ

θ

rr

r

rrr

r

r

1

11

2

2

2

2

2

 

 

4.2 Quasi-static stresses for zero-axial strain 
By superposing stress components obtained from previous method, we find quasi-

static stresses. Previous calculations were made in the initial hypothesis of zero-axial strain: the 
resulting axial stress 0zσ  corresponds to the case of a rod restrained by two plates at the 
extremities preventing any axial deformation. So we obtain: 

(17) 

( ) TErz

rrr

rrr

ασσνσ

τττ

σσσ

σσσ

θ

θθθ

θθθ

−+=

′′+′=

′′+′=

′′+′=

0

 

Results for the stresses at most relevant locations for η=1.5mm and for t= tsp are given 
in the following graphs.  
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Figure 4-1 In-plane quasi-static stresses as a function of radius at t=tsp 
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Figure 4-2 Axial stress at zero-strain as a function of radius (η=1.5mm) 
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Axial stress at zero strain (r=R)
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Figure 4-3 Axial stress at position r=R, θ=3π/2 as a function of eccentricity 

 The analysis of quasi-static stresses with zero-axial strain leads to the following 
conclusions: 

1. Polar shear stress is non zero when eccentricity is present. 
2. Maximum negative tangential stress is found for r≈0.9η, while maximum 

negative radial stress is found for r≈0.93η. Tangential stress is slightly more 
than radial stress in magnitude when η>0. Both values decrease in magnitude 
when η augments  

)46.8 and
 44.10 1.5mmfor  ;4.13 0(for 

MPa
MPaMPa

r

r

−=
−==−===

σ
σησση θθ  

3. Maximum positive tangential stress is found for r=R. Its values varies from 
3.88 MPa for η=0  up to 19.5 MPa for η=1.5mm. 

4. Shear stress is zero on the symmetry plane, while has its maximum for θ≈-45º. 
5. Axial stress for zero-axial strain at r=R is minimum for η=1.5, it then increases 

rapidly for η down to 1mm and thereafter becomes more stable, with a 
maximum of around 1MPa for η=0.6mm (Figure 4-2) 

 

4.3 Total quasi-static axial stress 
Axial stress in previous calculations was obtained in the hypothesis of zero axial strain. 

In reality the rods are free at their extremities: to restore such condition we have to ensure that 
the axial force and bending moment resulting from axial stress at each section of the rod are 
zero. 

 In order to do so, we first calculate resultant axial force and moment for the previous 
configuration and then superimpose at the extremities the same force and moment changed in 
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sign. Resulting axial stress will be the actual longitudinal stress acting on the free rod far from 
the extremities4. 

Equivalent axial force in the case of restrained rod (zero-strain) is calculated via the 
following integral: 

(18) ∫ ∫−= 2

2
0 02

π

π θσ
R

zz rdrdF  

It is very interesting to note that Fz remains constant over the time for t>tsp. For 
η=0mm, its value exactly matches the one calculated for the axisymmetric case [7]. It can be 
shown that for the off-axis as well as for the axisymmetric case, the resultant axial force is 
proportional to the total deposited energy or, in other words, to the final temperature: 

(19)  2RTEF finz πα=

The value of Fz slightly diminishes with increasing eccentricity, since deposited 
energy is less for high eccentricity. For η=0, Fz =65N, while for η=1.5mm, Fz =60N. 

The equilibrating bending moment about horizontal axis5 (θ=0º) Mx can be computed 
likewise. 

(20) ∫ ∫
−

−=
2

2
0

2
0 sin2

π

π
θθσ

R

zx drdrM  

In this case the result depends upon time and becomes zero when t , as one could 
expect, since temperature gradient disappears. Anyhow, it is interesting to observe that Mx 
remains substantially constant for the first millisecond ( ); this consideration will be 
very important for the dynamic analysis. It is also interesting to note that the ratio Mx/Fz is very 
close to eccentricity (a bit less). 

∞→

Figure 4-4

Total quasi-static axial stress is given by the superposition of  0zσ  with the axial 
stresses generated by Fz and Mx. 

(21) 

4

sin
420 R

rMx
R
Fz

zz π
θ

π
σσ ⋅

++=  

Resulting stress is given in Figure 4-5. 

                                                           
4 At the two rod extremities this solution will not be strictly applicable. Anyhow, for the sake of results, this is not 
too worrisome since, as we will see, the most critical section is found at mid-rod where the method is largely valid. 
5 The bending moment about the vertical axis is always zero because of symmetry. 
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Figure 4-4 Bending moment about x-axis as a function of time (η=1.5mm) 
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Figure 4-5 Quasi-static axial stress for η=1.5mm 

Axial stress has a minimum close to r=η and is maximum for r=R. Minimum slightly 
varies with eccentricity (from -26.8MPa for η=0 to -21.8MPa for η=1.5mm) while maximum 
increases from 3.88MPa for η=0 to 5.26MPa for η=1.5mm. 
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5. DYNAMIC STRESSES 

5.1 Introduction 
In the previous chapter, quasi-static stresses were exactly calculated. However, the 

effect of inertia was completely neglected. We know from previous analyses [7] that the 
dynamic effect induced by longitudinal and radial waves is very relevant on the longitudinal 
stresses, while the contribution of radial waves over in-plane stresses is almost negligible. This 
assumption is also confirmed by other analytical studies [8]. Therefore we will focus our 
dynamic analysis on the calculation of longitudinal and bending oscillations while we 
completely neglect the presence of radial waves. 

The approach will be different from what previously used: instead of trying to solve 
explicitly the equations of motions, we make use of the modal analysis, studying the time 
response to two constant excitations rising from zero to constant value in tsp (Figure 5-1), 
represented by the equivalent axial force Fz and the bending moment Mx applied at the 
extremities of the rod. This approach can intuitively be justified as follows: from a purely 
mechanical point of view we can think of our system as an off-axis preloaded spring clamped 
between two plates which are progressively removed in a time equal to tsp. The removal of the 
plates will induce in the spring longitudinal and flexural oscillations which can be calculated. 

As a matter of fact Mx is not constant after tsp, but as shown in Figure 4-4, it can be 
considered as such at least for the first 1000µs, which is the time domain of greatest interest for 
our analysis. 

Mx 

Fz 

g(t) 1 

t 
tsp 

 
Figure 5-1  Equivalent dynamic excitations (Constant with rise time) 

To calculate time-response we make use of the Mode-summation method, which 
basically expands the deformation in terms of the normal modes φzi(z) or φfi(z) and of the 
generalized coordinates qzi(z) or qfi(z) of a simply supported uniform beam loaded at the 
extremities with Fz(t) or Mx(t) respectively [4]. 

The equation of motion for each linearly independent mode is obtained by the 
application of the Lagrange’s equation which leads to, 

(22) 
i

i
ii

i

M
Q

q
dt

qd
=+ 2

2

2

ω  

where Mi and Qi are the generalized mass and generalized force for the ith mode. 
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The generalized force Qi is obtained from the work done by the action Fz or Mx applied 
at the extremities in the virtual displacement δqi 

5.2 Flexural modal analysis 

In case of bending, the lateral displacement of a simply supported beam w(z,t) can be 
expanded in terms of the natural modes and of the generalized coordinates as follows: 

(23) ∑ ⋅=
i

ifif tqztzw )()(),( φ  

If we apply the bending moment Mx at the rod extremities, with a time history as 
shown in Figure 5-1, the generalized force for the ith mode takes the following expression: 

(24) ( )[ ] )()(11
2)()(

tgFtg
LM

itMx
M

tQ
if

isp

i

if ⋅=⋅−−
⋅

⋅
=

π
 

where M is the mass of the rod, and g(t) is the unit excitation shown in Figure 5-1. 
The expressions of natural (circular) frequencies and mode shapes6 for a simply 

supported beam under bending are given by: 

(25) )sin(2)(
L
zizif

πφ =  

(26) ( ) 3
2

ML
EJiif πω =  

where J is the moment of inertia of the rod circular section. The fundamental 
frequency and period of the system are given by: 

sT

Hz

f

f

3
1

1

10139.2

5.467
2

−⋅=

=
π

ω
 

The solution of equation (22) as a function of Ffi is known when an excitation g(t) is 
applied [4].  

The calculation of the dynamic bending stress induced by lateral displacement w(z,t) 
immediately follows and is given by: 

(27) θθσ sin),(),,,( rtzwEtzrf zDyn ⋅′′=  

where  is the second derivative of the lateral displacement w.r.t. z. ),( tzw ′′

                                                           
6 Strictly speaking, the use of these mode shapes leads to a curvature w ),( tz′′  which is always zero at the 
extremities and does not satisfy the boundary condition Mx(t)=EJ ),0( tw ′′ . Nonetheless we retain this approach 
since we know that the solution is not valid at the extremities and the value of EJ ),( tzw ′′  approaches Mx when 
z→0 or z→L (see ). The same goes for the longitudinal dynamic stress. Figure 5-3
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In the following graphs results are given for η=1.5mm, approximating equation (23) 
with the first 60 terms of the expansion. 

It is interesting to note that, in line with the fundamental period, the first bending stress 
peak is reached roughly after 1ms, i.e. slightly less than the first half-period. Its value for r=R is 
19.6MPa (Figure 5-6). 
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
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Figure 5-2 Lateral displacement at mid rod as a function of time (η=1.5mm) 
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L0 z  
Figure 5-3 Equivalent moment EJw” along the rod at different instants (η=1.5mm) 

Figure 5-4 is very interesting since it shows that the highest bending moment is found 
at the rod centre, it slightly decreases along the rod and then falls to the asymptotic value Mx 
when we approach the extremities. Figure 5-3 shows that the equivalent moment tends at any 
time to Mx at the extremities (for η=1.5mm, Mx=0.083Nm) 
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Line of maxima
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Figure 5-4 Equivalent bending moment at various locations as a function of time 
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Figure 5-5 Maximum bending stress at mid rod (r=R; θ=3π/2) (η=1.5mm) 
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Figure 5-6 Maximum bending stress at mid rod (compressed time scale) (η=1.5mm) 

5.3 Longitudinal modal analysis 
The longitudinal dynamic stress is calculated with the same method used for dynamic 

bending. In this case the variable of interest is the longitudinal displacement, which is given by: 

(28) ∑ ⋅=
i

ziziz tqztzu )()(),( φ  

The generalized forces are given by: 

(29) ( )[ ] )()(11
2)()(

tgFztg
M
tFz

M
tQz

i
isp

i

i ⋅=⋅−−=  

Natural modes and natural frequencies are: 

(30) )cos(2)(
L
zizzi

πφ =  

(31) 
ρ

πω E
L
i

iz =  

The parameters of the fundamental harmonic are: 

sT

Hz

z

z

5
1

1

10399.8

11910
2

−⋅=

=
π

ω
 

We immediately see that the time scale for longitudinal waves is almost by two orders 
of magnitude smaller than that of bending oscillations. 

Finally, the dynamic longitudinal stress component is calculated as: 
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(32) ),(),( tzuEtz zzDyn ′⋅=σ  

where  denotes the first derivative of uz, i.e. the longitudinal strain. ),( tzuz′

Results are given in the following graphs. From Figure 5-8 we see that the calculated 
longitudinal stress perfectly matches the result obtained for the axisymmetric case, making use 
of the finite difference method. For η=1.5mm, maximum longitudinal stress is 6.1MPa, which, 

as found for the axisymmetric case, corresponds to 22
R
Fz

π
, i.e. twice the quasi-static 

longitudinal stress. The dynamic longitudinal stress oscillates between 0 and 22
R
Fz

π
, with the 

quasi-static stress as mean value. 
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Figure 5-7 Longitudinal displacement at the rod extremities (η=1.5mm) 
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Figure 5-8 Longitudinal stress at mid-rod and L/4 as a function of time (η=1.5mm) 
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5.4 Equivalent global stress 
All the elements are now on hand to calculate the global components of stress acting 

on the target rods7 
The global axial stress σz is obtained by superimposing the zero-strain quasi-static 

component (17)(iv) with the dynamic bending stress (27) and the dynamic longitudinal stress 
(32). 

(33) ),(),,,(),,(),,,( 0 tztzrftrtzr zDynzDynzz σθσθσθσ ++=  

The four global components of stress are given by eqs. (17)(i), (ii), (iii) and (33). 
To assess the structural risk for the rods, we must choose a Criterion of elastic failure 

leading to the calculation of an equivalent tensile stress. Among the many available methods, 
the one best coping with the non-symmetric elastic behavior in tension and compression of the 
graphite seems to be the Stassi-d’Alia criterion. For our four-component state of stress, the 
expression of the equivalent stress is given by: 

( )( )

( ) ( )( )[ ]
µ

σσσστσσµµστσσµ

µ
σσσµ

σ

θθθθθ

θ

2
14221

2
1

2222222
rzzrrzrr

zr
eq

++−+−+++++
+

+
++−

=

 

where µ=3.3 is the ratio between the compressive and tensile elastic limit of graphite. 
We are particularly interested to the absolute maximum of the function σeq(r,θ,z,t) 

which varies in time and in space. The point and the instant at which σeq is maximum cannot be 
known a priori. Anyhow, considering that quasi-static stresses (17)(i), (ii), (iii) are constant 
along the axis, while longitudinal dynamic stress (32), though not constant with z, takes on 
everywhere the same maximum value (Figure 5-8), we come to the conclusion that the most 
loaded section is the mid-rod section where dynamic bending stress is maximum (Figure 5-4).  

Furthermore, bearing in mind that all quasi-static components decrease with time as 
temperature, the maximum in time must be found either at tsp (when quasi-static stresses are 
highest) or at tf1 (when bending moment reaches first peak): a rapid check allows to verify that 
maximum is found at tf1. If we graphically check mid-rod section at time tf1, we see that the 
most loaded point is found at r=R, θ=3π/2, i.e. on the section boundary, in the direction of 
eccentricity. The value of tension here only depends upon σθ and σz, since on the surface the 
other components of stress are zero. 

We report in Figure 5-9 the equivalent stress for most loaded point as a function of 
time when η=1.5mm. The peak reached at time tf1 can be very well appreciated: its value is 
25.3MPa, while tf1=0.973ms. 

If we change eccentricity, it is very interesting to note that maximum equivalent Stassi 
stress is found for η=1.23mm. This result, which might look unexpected, is due to the fact that 
axial stress reaches a maximum for η≈1.1mm and then starts to decrease. Tangential stress 
continues to increase with eccentricity, but its effect is completely offset by diminishing axial 

                                                           
7 As mentioned above, this is strictly true in the hypothesis of confounding the global radial and tangential stress 
with their quasi-static values. 
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stress (Figure 5-10), so producing a maximum for equivalent Stassi stress. Highest equivalent 
stress at η=1.23mm is 27.1MPa. 
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Figure 5-9 Equivalent Stassi stress at r=R, θ=3π/2 as a function of time (η=1.5mm) 
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Figure 5-10 Equivalent Stassi stress and components as a function of eccentricity  
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5.5 Effect of successive bursts 
As mentioned at the end of thermal analysis, when the second proton burst hits the 

target thermal equilibrium has not been reached yet (see Figure 5-11). Subsequently, also quasi-
static stresses, which depend upon temperature gradient, are non-zero. This means that that 
stresses induced by the second burst sum up with the remnant stresses of previous burst.  
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Figure 5-11 Temperature as a function of time for a single and double burst (η=1.5mm) 

Since the system is supposed linear, the principle of superposition still holds8. Thus we 
may obtain new stress state by simply by simply adding to terms like f(t), functions like f(t-tb), 
where tb is the time elapsed between two successive bursts (50ms). This method has a major 
drawback: the assumption made for the “equivalent” bending moment no longer holds, since 
upon time tb, Mx is no more constant as initially assumed (see par. 5.2). This hurdle can be 
overcome by assuming a linear decay of Mx over the time up tb, hence better interpolating real 
behaviour (Figure 5-12).  
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Figure 5-12 Comparison between actual bending moment and linear interpolation (log plot) 

                                                           
8 We assume here that the second burst hits the target in its rest position. In reality, at instant of proton beam 
impact, displacement may be non-zero (see ), thus, the rod could be bent under the effect of equivalent 
moment: this deformation would modify the eccentricity of the proton beam. Since the lateral displacement is 
always in the direction of the eccentricity, “apparent” offset would be reduced. Assuming a straight rod means that 
we maximize the effects of second burst.  

Figure 5-2
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The function g(t) of Figure 5-1, is now replaced by another excitation g’(t), 
combination of two ramp functions as shown in Figure 5-13 

Mx 

1 g’(t) 

t 
tsp 

 
Figure 5-13 Equivalent excitation for Bending moment with linear decay 

Mode shapes and natural frequencies remain the same previously calculated. The 
solution for this case can be obtained by superimposing the response to two ramp functions 
offset in time. 

In line with what assumed in chapter 5, results do not change up to the first 
milliseconds. On the contrary differences arise from then on, as shown in  and 

 (compare with  and ). 
Figure 5-14

Figure 5-14 Lateral displacement at mid rod assuming linear decay for Mx (η=1.5mm) 
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Figure 5-15 Maximum bending stress at mid rod (r=R; θ=3π/2) assuming linear decay for Mx (η=1.5mm) 

With a more accurate solution for dynamic bending stresses, we can now recompute 
equivalent stress, induced also by a second burst, as announced above. 
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Figure 5-16 Equivalent Stassi-stress for single and double burst (η=1.5mm) 

Figure 5-16As we may see from , new maximum is reached after the second burst, at 
t=0.05037s with a peak of 32.4MPa, i.e. roughly 7MPa more than top stress after the first 
pulse. The increase in maximum equivalent stress tends to reduce with smaller eccentricities, as 
we may see from Figure 5-17; for η=1.2mm this difference reduces to 4.1MPa. 

If we were to continue our analysis, still worse cases could be expected for successive 
bursts, with maximum equivalent stress continuing to build up. However we must remember 
that the hypothesis of adiabatism was initially made in the assumption of a short time-scale. If 



Technical Note EST-ME/2003-006  
 
 

23

time-scale is enlarged, adiabatism no longer holds since phenomena of heat radiation and forced 
convection must be taken into account. 

Equivalent Stassi stress after 1st and 2nd pulse (r=R)
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Figure 5-17 Maximum Stassi stress at r=R, θ=3π/2 after first and second burst as a function of eccentricity 

6. CONCLUSIONS 

In this note, a model to study the influence of a sudden heating with off-axis Gaussian 
distribution, induced by a fast extracted proton beam, over a cylindrical rod was developed. The 
problem was solved using analytical methods, with constant, mean values for thermodynamic 
and mechanical material properties, assuming adiabatic boundary conditions. 

The temperature distribution was first calculated as a function of time and space, with 
the initial conditions expanded in a Fourier-series. The results lead to some important 
conclusions: 

1. The time necessary to reach thermal equilibrium increases with eccentricity, changing 
from 0.093s for the axisymmetric distribution to 0.364s for 1.5mm-eccentricity. This 
automatically implies that the effects of one burst have not vanished yet when the next 
one hits the target.  

2. As one could expect, final temperature is lower for higher eccentricities, since deposited 
energy is less, as part of the proton beam “misses” the target. For η=0, Tf=81ºC; for 
η=1.5mm, Tf=74.7ºC. 

Once known the temperature distribution, quasi-static stresses were calculated making 
use of the General theory of elasticity in the assumption of plane-strain behaviour (long 
cylinder). Quasi-static stresses were obtained by superposition of two parts: the first satisfying 
the thermoelastic equation, the latter restoring free-boundary condition. To ensure axial 
equilibrium equivalent axial force and bending moment were then added. The quasi-static 
stresses so calculated, constant along the rod axis, depend upon the eccentricity.  
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In general, if Stassi-d’Alia criterion is applied, maximum quasi-static equivalent stress 
is found on the outer surface, aligned with the radial direction of maximum eccentricity for 
offsets larger than 0.6mm, while for smaller eccentricities, highest equivalent stress moves 
towards the heat centre (r=η). Its value roughly increases with eccentricity, form 14MPa for 
η=0, up to 20.2 for η=1.5mm. 

To take into account the dynamical effects, which were neglected in the quasi-static 
analysis, a dynamic model was developed. This model led to the calculation of longitudinal 
dynamic stresses, while for the other component of stress it has been seen that they could be 
confounded with their quasi-static value. The dynamic component in the axial stress was due to 
the sudden application of the axial force and the bending moment arising to ensure axial 
equilibrium, which generate longitudinal waves and lateral oscillations respectively. 

The dynamic analysis saw an increase in the equivalent Stassi stresses with respect to 
quasi-static analysis; in particular it was noticed that: 

1. The fundamental harmonic of the transverse oscillations has a frequency of 
467Hz corresponding to a period of 2.139e-3sec. First stress peak is reached at 
about tf1≈1ms 

2. the fundamental harmonic of the longitudinal waves has a frequency of 
11910Hz corresponding to a period of 8.399e-5 sec 

3. Maximum equivalent Stassi stress takes place at t=9.73e-4s, when the first 
peak of the bending moment is reached. 

4. Maximum equivalent Stassi stress is found for η=1.23mm and is 27.1MPa. 
This result, which might sound unexpected, is due to the fact that axial stress 
reaches a maximum and then starts to decrease. Tangential stress continues to 
increase with eccentricity, but its effect is completely offset by diminishing 
axial stress, producing a maximum for equivalent Stassi stress. For η=1.5m 
maximum stress is 25.3MPa. 

Finally, considering that the effects of one burst interact with those of the following 
one, it was calculated the equivalent stress in case of two successive bursts: its maximum is 
found immediately after the second burst and is the order of 32.4MPa for η=1.5m, i.e. as much 
as 7MPa more, even if this difference decreases with smaller eccentricities. 

It is logical to expect a further increase should other impacts take place, but one must 
bear in mind that over long time scales deposited energy starts to be dissipated by convection 
and radiation phenomena, therefore calculated stress would be overestimated. 
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