

## The LHC Collimation project



## LHC Collimators for Phase 1

Effects of the 450GeV accident case (TT40 experiment) on the jaw metal support (preliminary report)

71st Collimator design meeting 01/09/2005

Alessandro Bertarelli Alessandro Dallocchio







#### **Outline**

- TT40 test results
- Preliminary interpretation
- Simplified "didactic" model
- Actual model
- Outlook and conclusions





Controls on prototype #2 after TT40 test (5 3.2x10<sup>13</sup> p shots plus many more at lower intensity) ...

- No sign of mechanical damage on both C/C and graphite jaw (in agreement with calculations).
- No permanent deformation of jaws.
- Permanent bending of metal support (~300÷350 μm)

No in-depth calculations were done so far on the metal support for the accident cases (all focus on the jaws) ... this has to be reconsidered!!





## Temperature profile after 7.2 µs (5 mm offset) "hottest" cross-section







## A simplified theory to justify permanent bending deformation ... (1)

- The metal support is free to expand, but because of the rapidity of the thermal shock it acts "as if" no expansion is allowed ⇒ compression stresses arise ...
- For copper a  $\Delta T = 70^{\circ}C$  with prevented expansion leads to  $\sigma_z = -E\alpha\Delta T \cong -140MPa$ . This is well above yield strength of OFE-Cu ( $\sim 50$  MPa)  $\Rightarrow$  Plastic compressive deformation of 3mm Cu plate (and partially Cu pipes) ( $\varepsilon_z < 0$ )  $\Rightarrow$  Bending of the support away from the beam!





# A simplified theory to justify permanent bending deformation ... (2)

- Vibrations are induced. Can successive tensile stresses lead to a "counter-plasticization" and positive permanent strains?
- An in-depth coupled thermo-mechanical transient elastoplastic analysis is necessary!!
- Unfortunately such a non-linear analysis is very time-consuming
  - shot duration 7  $\mu$ s  $\Rightarrow$  calculation time-step  $\leq$  1  $\mu$ s
  - Flexural eigen-frequencies ⇒ > 15 ms
  - At least several periods must be studied ⇒ time-span > 0.1 s
  - Number of calculation substeps > 150000 

    ⇒ CPU time ~15 s/substep ⇒
     25 days of calculation for a full model





A simplified model is first used to understand the "basics" of the phenomenon and get results in a short time ...

15 mm thick, 1 m long beam, bi-metal

3 mm elasto-plastic Cu ( $\sigma_0$  = 50 MPa)

12 mm fully elastic Glidcop ( $\sigma_o = 300$  MPa)

Temperature increasing from 27°C to 97° in 7  $\mu$ s on all Cu strip

Heat diffusion taken into account

Density artificially reduced to "accelerate" the process

v=0 to avoid mechanical coupling





#### Results for the simplified didactic model







#### Results for the simplified didactic model (2)



This is due to the fact that the permanent deformations on the Cu plate remain always negative

Longitudinal plastic strain on Cu-plate at mid span





## Results for the simplified didactic model (3) What happens if a fully elastic model is used?



Bending stress at midspan on Cu-strip face

Compressive stress on Cu-plate would reach 200MPa, because of dynamic effect





#### 3-D full model of metal support

TT40 prototype simulation (i.e. Cu-OFE for pipes and plate, Steel for C-bar)

Actual energy distribution from FLUKA runs (linearly increasing during 7.2µs)

Elasto-plastic behavior for all materials







#### Results for the 3-D full model (analysis stopped at 13ms)



The displacement pattern seems to be the same as for simplified model, with a z non-uniformity







#### Results for the 3-D full model (analysis stopped at 13ms)





Longitudinal strains are always negative and seem to have stabilized after some millisec.

 $arepsilon_{\mathsf{z}}$  at 900 mm





#### Results for the 3-D full model (analysis stopped at 13ms)



A certain degree of plasticization is found also on pipes (here in Cu-OFE)





#### **Conclusions and outlook**

- A preliminary "quasi-static" theory predicts that a permanent bending away from the beam is justified
- A simplified numerical model confirms this theory
- Partial results for the 3D full model are in agreement with simplified model. One might reasonably predict that permanent deformations compatible with those measured might be expected.
- Given the level of elastic stress, the substitution of OFE-Cu with Glidcop for the Cu-plate seems the best solution.
- A limited degree of plasticization might be expected on the pipes even if in CuNi
- A new full analysis with definitive materials is mandatory.