Geneva, 30 June 2004 External Review of LHC Collimation Project

LHC Aperture and Collimator Settings

Stefano Redaelli, Ralph Assmann, Jean-Bernard Jeanneret, Guillaume Robert-Demolaize

Input from many colleagues (S. Chemly, C. Rathjen, ...) and various WGs

CERN

AB - ABP - LOC

Switzerland

Overview of my talk:

1. Introduction

- The aperture of the LHC motivation
- How do we set the movable elements?

2. The LHC aperture bottlenecks

- Calculation of APL code
- Aperture restrictions in various cases (injection, low β , ...)

3. Proposed settings of movable elements

- Requirement from accelerator physics
- Collimation tolerances (flatness, tilt, β -beat,...)

4. More detailed calculations of aperture restrictions

- Detailed aperture model with < 1 metre spatial resolution
- Preliminary results loss paterns vs. quench limits

5. Conclusions

Introduction - motivation for the aperture model

Nominal beam trajectory

LHC: Two stage collimation system

Where are the halo particle lost?

⇒ Allow for a maximum loss rate to prevent quenches!

Need for an aperture model:

Aperture bottlenecks → collimator settings
How many protons are lost in which cold elements?
Which is the longitudinal distribution of losses?

Setting of movable elements within the LHC aperture

LHC ring mechanical aperture sets scale

→ tight LHC aperture (SC magnets!)

Protection devices must protect ring aperture

- → protect against injected beam / bump errors
- Secondary collimators tighter than protection
 - → avoid too much secondary halo hitting protection devices

Primary collimators tighter than secondary

a_{mech}

 $a_{prot} < a_{ring}$

 $a_{sec} < a_{prot}$

 $a_{prim} < a_{sec}$

How does this look likes?

Settings of movable elements - schematic view

Calculation of the LHC available aperture

⁽J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1 (1998) 081001)

Available mechanical aperture around the *full LHC ring* calculated with the APL code by J.-B. Jeanneret (See *LHC-Project-Note 111*)

Example: Beam envelope at the interaction point 5 (CMS)

Collision energy, squeezed optics.

Available aperture calculated for the full LHC ring in various cases (inj, $low\beta$)

Distribution of available aperture at injection (450 GeV)

The smallest available mechanical aperture defines the settings of primary collimators!

Minimal available aperture (injection)

Physical available space in unit sigma

Beam 1	Warm	Cold	
Horizontal	6.78	7.88	$\sigma_{\rm X}$
Vertical	7.68	7.79	σ_{y}
Beam 2	Warm	Cold	
Horizontal	6.68	7.70	$\sigma_{\rm X}$
Vertical	7.65	7.60	σ_{y}

 \Rightarrow We take $A_{mech} = 7.5 \sigma$ as the available mechanical aperture

What are the corresponding collimator openings?

Collimator settings at injection (450 GeV)

(based on discussions with WGs involved)

a _{mech}	=	7.5 σ	Available mechanical aperture
a _{prot}	=	7.2 σ	Protection devices
a _{sec}	=	6.7 σ	Secondary collimators
a _{prim}	=	5.7 σ	Primary collimators

In millimetres...

For $\sigma \approx 1 \text{ mm}$ at injection \Rightarrow collimator half-gap: $A_x^{Prim} \approx 6 \text{ mm}$

Distribution of available aperture at collision (7 TeV) (squeezed optics)

Minimal available aperture (collision, nominal β^*)

Physical available space in unit sigma

Beam 1	Warm	Cold	
Horizontal	28.1	8.90	$\sigma_{\rm X}$
Vertical	8.34	8.43	σ_{y}
Beam 2	Warm	Cold	
Horizontal	27.6	8.13	$\sigma_{\rm x}$

 \Rightarrow We take $A_{mech} = 8.0 \sigma$ as the available mechanical aperture

Primary collimators at $\approx 6 \sigma = 6 \times 200 \ \mu m \Rightarrow A_x^{Prim} \approx 1.2 \ mm$

Why collimator tolerances?

Review of collimator tolerances

Work done by R. Assmann *et al (Proc. EPAC2002)*

Error	Tolerance		
Orbit position	0.6 σ		
β-beat	8 %		
Longitudinal angle (tilt) control	20 µrad	_	
Surface flatness - TCP	10 μm		See talk by
- TCS	25 μm	ſ	A. Bertarelli
Knowlegde of gap	50 μm	Ĵ	
Jaw position control	≤ 10 μm	<pre>}</pre>	See talk by F. Decorvet
Reproducibility of settings 20 µm			

Overview of my talk:

- 1. Introduction
- 2. The LHC aperture bottlenecks
- 3. Settings of movable elements
- 4. More detailed calculations of aperture restrictions
 - Detailed aperture model with < 1 metre spatial resolution
 - Preliminary results loss paterns vs. quench limits
- 5. Conclusions

Detailed calculations of beam loss patterns

Calculation of beam envelope based on linear optics ($\beta_i \rightarrow \sigma_i$) does **not** allow estimating in detail the *proton loss rate*!

Need for:

- Exact tracking of secondary and tertiary beam halo with collimators (multipole errors, chromatic effects, ...)
- Detailed aperture model of the LHC aperture (full ring, with accuracy ≈ 0.1 metre)

G. Robert-Demolaize

Simulations of *distribution of lost particles* around the ring. Tracking of many particle (20 x 450000)

Example:

First superconducting magnet downstream of momentum cleaning (IR7)

Uniform distribution!!

Loss patterns at injection

Loss patterns at collision (all IPs squeezed)

- Squeezed optics \Rightarrow particle lost in the SC triplets of experiments!
- Installation of local absorbers (TCT) will improve local clenaning
- Quench limit may be relaxed because particles are lost uniformly around pipe!

Conclusions

- ✓ Problem of the LHC aperture has been presented
- Model based on linear optics to estimated the *LHC aperture bottlenecks* Definition of the settings of movable elements:
 - 1. Tight collimator settings are required to protect the machine and to achieve the desired collimation performance (opening $\leq 6 \sigma$, retraction $\approx 1\sigma$)
 - 2. Correspondingly, stringent tolerances are imposed (μm range)
- ✓ Powerful tools for halo tracking + aperture model (10 cml have been set up
 - 1. Patterns of lost protons around the full ring (inj + coll energies)
 - 2. Achieved local inefficiency compared with quench limit of SC magnets
- \checkmark Studies on-going to understand in detail loss patterns \rightarrow Imperfections!

Acknowledgements

Collimation Working Group Injection Working Group Protection Working Group

AB-ABP-LOC: O. Bruening, T. Risselada, S. Fartouhk, F. Schmidt

- TS-IC: S. Chemli, P. Le Roux
- AT-VAC: C. Rathjen, G. Schneider, R. Veness, J. Knaster, ...
- AB-CO: V. Kain

... and many others...