Status of energy deposition studies in IR3

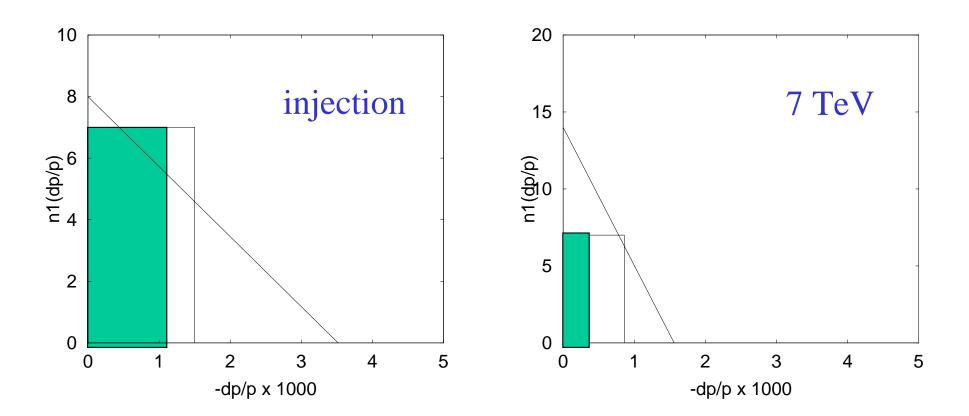
I. Baichev, I. Kurochkin and J.B. Jeanneret (speaker)

1st July 2004

IB,IK,BJ, Review of the LHC Collimation Project

1

Outline

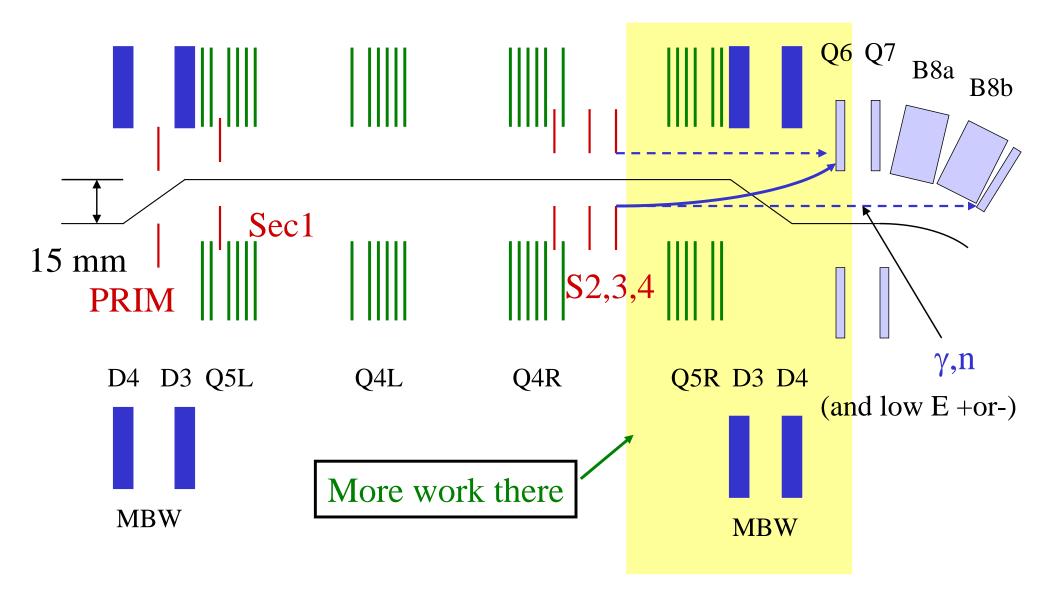

- Optics + dp-cut
- Layout of IR3
- Graphite , strength and weakness
- Tertiary absorbers
- 7 TeV : Allowed lifetimes
- Ramping : Allowed uncaptured fraction
- E-deposition and doses, preliminary

δp collimation

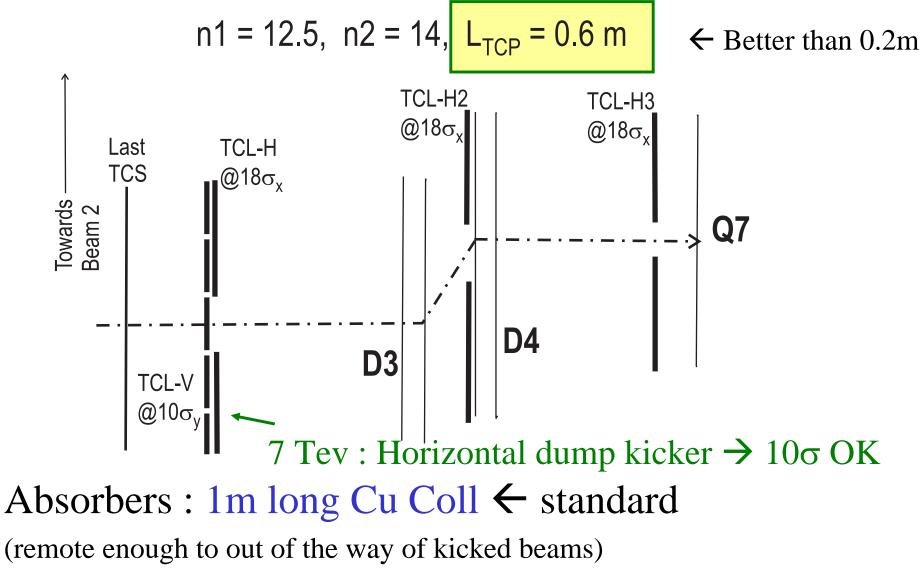
α_{PRIM}	φ	μ_x	μ _y	α_{Jaw} Norm.
0	0	μ ₀	-	0
0	π	π – μ_0	-	0
0	$\pi/2$	π	$3\pi/2$	μ ₀
0	$-\pi/2$	π	$3\pi/2$	$-\mu_0$

- A single primary collimator
- 4 secondary collimators beyond gain in A_{sec} halo marginal
- Real case very close to above optimum
- Normalised dispersion at PRIM $D/sqrt(\beta) = 0.2 \text{ m}^{1/2}$ to protect the arcs

δp and β -amplitude cut



Mom. aperture $\delta p = 4/1000$ including secondary halo


Kicker errors \rightarrow Graphite Jaws

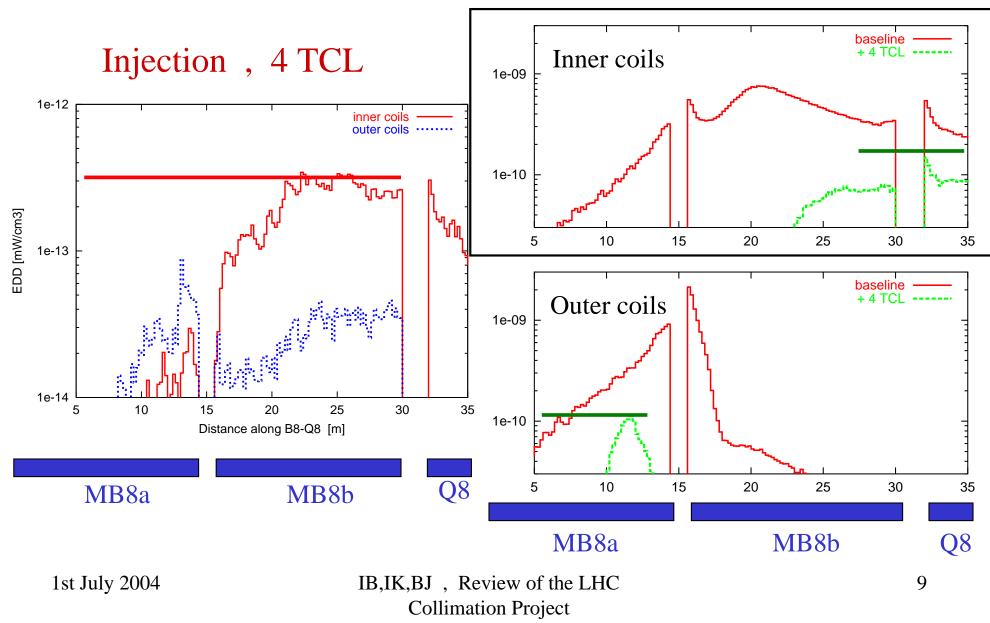
- 'Collimators shall not be made of grass' (Graphite ~ grass)
 - Hadronic mean free path :
 - Cu : 15 cm C : 43 cm
 - e+e- pair mean free path
 - Cu : 1.9 cm C : 28 cm
- Mechanically : $L_{Cu} = 50 \text{ cm} \rightarrow L_C = 1\text{m}$ acceptable
 - Hadronic absorption suffers little (see relative efficiencies, Ralph)
 - EM energy nearly not absorbed ('selfish graphite')
 - \rightarrow C survives to kickers, but more power to close-by elements
- \rightarrow Minimum lifetime allowed in *(see below)*
 - Front of Q6 : 150 h (specification : 1 h)
 - MB8b : 36 h
- \rightarrow Additional absorbers needed

Layout of IR3 - baseline

Additional absorbers

1st July 2004

IB,IK,BJ, Review of the LHC Collimation Project 7

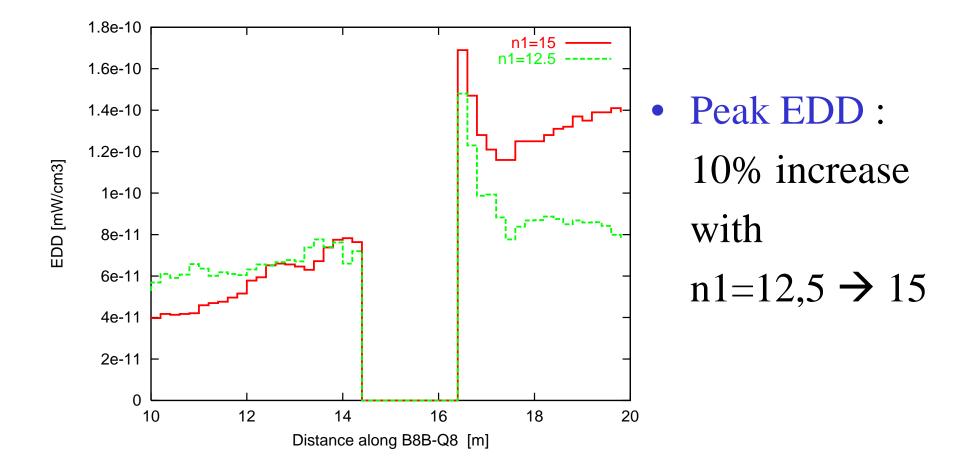

Simulation Method

• STRUCT :

- Multi-turn tracking to get primary and secondary impact maps of nearly on-momentum protons
- Longitudinal density of off-momentum protons at and beyond the dog-leg section
- MARS -- Full cascade development
 - Detailed power densities (pipe, coils,...)
 - Contribution to forward maps (>= dog-leg)
- Flexible, Understandable and CPU reasonable

Peak Energy Deposition in coils [mJ/cm3/proton]

7 TeV


Presentation of results

- For a given s.c. element, get the Energy deposition ε_p [J/cm³/proton captured]
- Compare to quench power density ε_q [W/cm³]
- Get $dN/dt_{max} = \epsilon_q / \epsilon_p$ allowed for this magnet
- Convert to $\tau_{\text{long}} = N_{\text{coast}} / (dN/dt_{\text{max}})$, $N_{\text{coast}} = 3 \times 10^{14} \text{ p}$
- Build an 'allowed lifetime map'

Local Quench limit and allowed lifetime at 7TeV

	Local Allowed Lifetime [hours]			
SC magnet	No TCL	3 TCL	4 TCL	
		(no H3)		
MCBCV	150	1.2	1.2	
Q 6	18	0.3	0.3	
Q7	18	0.4	0.2	
MB8a	15	3.0	1.8	
MB8b	36	4.5	1.3	
Q8	9	3.7	2.5	

n₁ dependence

Allowed transient losses at Injection (quench only)

- The transient heat reserve of the cable at injection from $T_0=1.9$ K to $T_c=9$ K is $\Delta Q=0.35$ J/cm³
- The peak energy deposition is $\varepsilon = 3 \ 10^{-16} \ J/cm^3/proton$
- Use a margin factor of 2 for uncertainties
- The ramp must continue \rightarrow another factor 1.5

$$\rightarrow \Delta N_{off-bucket} = 0.33 \Delta Q/\epsilon = 3.8 \times 10^{14} p$$

$$\rightarrow \Delta N_{off-bucket} > N_{nominal} = 3.3 \times 10^{14} p$$

$$-- Comfortable ---$$

Side results

- Peak radiation deposition in warm magnet coils
- Peak power deposition in Vacuum chambers
- Overall power flow distribution (preliminary results)

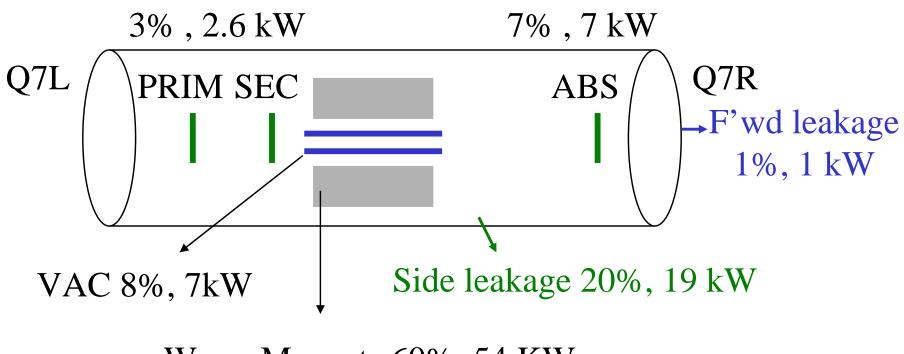
Integrated radiation peaks in IR3 - magnets

- For 10¹⁶ protons captured per year (Mike Lamont)
- Peak always in coil Rad. resistance specified 50 MGy
- Drops rapidly with radius

	Dose [MGy/year]		
Location	Face	Inside	
D3L	1.5	0.5	
Q5L	4.5	1.5	
Q4R	1.5	0.5	

- \rightarrow OK for at least 10 years
- Can be further reduced with few passive absorbers

Power deposition in Vacuum Chambers


- Checked for all MQW chambers
- (MBW : see IR7 team similar results)
- Worst lifetime : $\tau_{\text{beam}} = 1 \text{ h}$
- Power map nearly constant along one chamber
- Peak power integrated along the chamber

 $P_max = 2.7 \text{ kW}$

 \rightarrow Cooling mandatory

see I. Baichev et al., AB-Note-2003-085(ABP)

Power flow, $\tau = 1h$, $P_{tot} = 90kW$

Warm Magnets 60%, 54 KW

• Need passive aborbers to limit load on auxiliary systems

Conclusions for IR3

- Baseline 'Phase 1' graphite-only not enough even with reduced current , etc
- 4 additional absorbers (1m Cu standard Coll.) allow for $\tau_{\text{beam}} = 2.5 \text{ h}$
- →Nearly ultimate system (IR3/momentum)
- Many side studies still needed (passive absorbers, local shielding ...)