IMPEDANCE AND TRAPPED MODES FROM COLLIMATORS

E. Métral for the LHC Collective Effects team

- ◆ Transverse resistive-wall impedance model
- Stability diagram and coherent tune shifts for
 - The "old" collimator setting of the 2004 LHC Design Report
 - The new baseline layout (V6.5, Phase 1)
- Trapped modes
- Conclusion and outlook

Transverse resistive-wall impedance model (1/3)

- First unstable betatron line $f_{\beta}^{1} \approx 8 \text{ kHz}$
- Skin depth for graphite (ρ = 14 μΩm) $\delta(8 \text{ kHz}) \approx 2 \text{ cm}$
- Collimator thickness d = 2.5 cm

$$\Rightarrow \delta(f_{\beta}) = \sqrt{\frac{\rho}{\mu \pi f_{\beta}}} < d$$

⇒ One could think that the classical "thickwall" formula would be about right

$$Z_{\perp}^{\text{thick-wall}} (f) \propto \frac{1}{a^3 \sqrt{f}}$$

Transverse resistive-wall impedance model (2/3)

In fact it is not ⇒ The resistive impedance is ~ 2 orders of magnitude lower at ~ 8 kHz!

⇒ A new physical regime is revealed by the LHC collimators

Transverse resistive-wall impedance model (3/3)

- ⇒ Good agreement between 2 recently derived general multilayer formulae
 - L. Vos (circuit analysis, using an "inductive bypass")
 - A. Burov and V. Lebedev (quasi-static beam model)

and HFSS simulations by H. Tsutsui

Comparison between Vos and Burov-Lebedev

HFSS simulation by Tsutsui

Results obtained using Vos formalism

$$a = 2 \text{ mm}$$

$$Re(Z_{ver}/L)_{eff} \approx 0.09 M\Omega/m^2$$

 $Im(Z_{ver}/L)_{eff} \approx 1.2 M\Omega/m^2$

Stability diagram and coherent tune shifts

- Old situation (LHC Design Report, CERN-2004-003)
 - IR7 : 20 collimators
 - IR3:7 collimators

- New situation = Present baseline for Phase 1
 - IR7 : 3 P + 11 S = 14 collimators
 - IR3 : 1 P + 4 S = 5 collimators
 - ⇒ 19 collimators in total = 4 P + 15 S

~ - 30% in number and length

Primaries contribute ~ 5% of the effective impedance

Trapped modes (1/2)

- 2 options to connect the collimator jaws to each other and to the tank have been simulated with GDFIDL
 - Rolling contacts (based on a flexible conductor) ⇒ open

- The rolling contact is more stable mechanically, but it gives rise to a cavity, where trapped modes are excited
- Inner surface of tank and outer surface of collimator is better if made from stainless steel
- Maximum (pessimistic) heat load of 700 W for collimator with sliding contacts and stainless steel (1100 W if copper)

Conclusion and outlook

- ◆ The computations presented here for the resistive-wall impedance were made using Vos formalism, which is in good agreement with Burov-Lebedev theoretical results and Tsutsui simulations with HFSS
- A measurement campaign is planned for this year with an LHC collimator prototype
 - Beam-based measurements in the CERN SPS
 - Bench measurement using a vibrating wire method
- Concerning the trapped modes, stainless steel and sliding contacts should be used
- Only ~40% of the nominal beam intensity is stable with Phase 1!