

Possible scenarios for stage II ion collimation

G Bellodi

thanks to HBraun and JJowett for slides and information

Recap of current situation:

different physics of ion/material interactions: two stage collimation not optimal

Physics process	Proton	²⁰⁸ Pb
$\frac{dE}{Edx}$ due to ionisation	-0.12 %/m -0.0088 %/m	-9.57 %/m -0.73%/m
Mult. Scattering (projected r.m.s. angle)	73.5μrad/m ^½ 4.72μrad/m ^½	73.5µrad/m ^½ 4.72µrad/m ^½
Nucl. Interaction length ≈fragment. length for ions	38.1cm 38.1cm	2.5cm 2.5cm
Electromagnetic dissociation length	-	33cm 19cm

$$L \approx L_{\text{int}} = \frac{A_{coll}}{N_A \rho (\sigma_{had} + \sigma_{emd})}$$

$$\frac{\Delta P}{P} = \frac{Z_2}{A_1} \frac{A_2}{Z_2} - 1$$

LHC energy acceptance:

- arcs: ~ ±1%

- IR3: ~ ±0.2%

²⁰⁴ Pb	²⁰⁵ Pb -	²⁰⁶ Pb -	²⁰⁷ Pb -	²⁰⁸ Pb
-1.92%	1.44%	0.96%	0.48%	0.0%
²⁰³ TI	²⁰⁴ TI -	²⁰⁵ TI -	²⁰⁶ TI	²⁰⁷ TI
-1.2%	0.71%	0.23%	0.26%	0.75%
²⁰² Hg -	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg
0.46%	0.04%	0.53%	1.02%	1.51%

Most particles stopped in primaries..

Losses on IR7 dispersion suppressor aperture: 30% - 50% current limit

Two stage coll.: Necessary condition:

$$\delta x' > \sqrt{\frac{\left(N_2^2 - N_1^2\right)\varepsilon_N}{\gamma_{REL} \beta_{TWISS}}}$$

 δx ' mainly due to multiple Coulomb scattering, with

$$<\delta x'^2>\sim L$$

Option # 1:

Add high Z scrapers at high β locations

Other ideas to increase deflection...

#2: Magnetic fringe fields

(first proposed by P Bryant et al in 1993 for CLIC)

- Required "magnetic field skin depth" in the order of 100 μm
 - Minimize or linearize residual field at beam core
 - 3D magnet code simulations needed

Condition to bend particle sufficiently to hit secondary collimator

$$\delta x' > \sqrt{\frac{\left(N_2^2 - N_1^2\right)\varepsilon_N}{\gamma_{REL.} \beta_{TWISS}}}$$

$$\downarrow \downarrow$$

$$BL > \sqrt{\frac{\left(N_2^2 - N_1^2\right)\varepsilon_N}{\gamma_{REL.} \beta_{TWISS}}} \frac{P}{Ze} \approx 0.2 \text{ Tm}$$

Sandwich structure for field modulation

#3 Electron lenses (> V Shiltsev, BEAM'07)

"LEL-Combo" Collimation

- Clean method (only e.m., no nuclear interactions)
- Fast cleaning time (resonance driven)
- No material damage concerns
- No mechanical systems involved
- Technology tested at Tevatron (abort gap cleaning)

#4 Crystal collimation

Channelling

- may benefit from suppression of fragmentation and EMD of ions
- long history of experiments, not always conclusive (single pass/multipass,
 SPS/RHIC → see talk given at CARE-HHH workshop last year)

Volume reflection

- more efficient, smaller deflection
- does not benefit from suppression of nuclear electromagnetic interactions

Open questions about operational stability, robustness, machine protection...

Physics of ion interactions?