LHC Collimation Project Header

 LHC Collimation Project

Home of the Project for the LHC Collimation System

 
Home Project Team Notes Collimator List Sounds/Movies Meetings
Links Papers Talks (WG) Layout IR3/7 Collimator DB Pictures
MP Tests Sounds 2011 Lossmaps Tracking Code LS1 activities ColUMM
SLAC collimation 2014 Commissioning
 

Final Layout of LHC Cleaning Insertions IR3 and IR7



Movie of IR7 layout

Descriptions/ECR    -    MAD-X input    -    Drawings   -   TWISS files

Collimator data    -    Loss distributions/FLUKA input    -    Gaps IR7


A new layout for momentum cleaning in  IR3 and the betatron cleaning in IR7 was designed in 2003/2004.
The new solution implements a reduced impedance solution with fewer collimators and place-holders for
future upgrades (phase1, phase2, phase4).

Status:   19.7.2004  -  Final
NEW: Updated on Sep. 7th for individual files concerning x, y, skew halo!

Link to old files from April 2004 (slight differences on 10cm scale)

The basic design parameters of different collimators, their locations and names are summarized on a different web page (Collimator Design and List).

Descriptions
& ECR
A detailed description can be found in the LHC design report Chapter 18.
   
  The changes and their impact on the LHC machine were analyzed in an Engineering Change request (LHC-LJ-EC-0002):
   
 

Link to PDF file                        Link to WORD file

   

MAD-X input The LHC lattice and optics files V6.5 include the new layout and optics for the cleaning insertions in IR3 (momentum cleaning) and IR7 (betatron cleaning). Input files for MAD-X can be obtained from the following location:

LINK to LHC input files V6.5
(released April04 - with new collimation insertions IR3&IR7)

LINK to LHC input files (different verisons)

   

Drawings Drawings show a 2D side view with all components for beam 1 and beam 2 included (2D integration by S. Chemli and H. Prin). Format is Autodesk DWF (free view available from Autodesk).

                        Drawing IR3                               Drawing IR7


TWISS files MAD-X is used to generate TWISS files for the cleaning insertions. These files can be used to build the geometry in the cleaning insertions. All files include the following information, organized in columns:

 

 
Column # MAD variable Unit
1 KEYWORD - element type: LHC collimators are specified as RCOLLIMATOR.  
2 NAME - name of element: naming conventions apply
TCP - primary collimator
TCS - secondary collimator
TCT - tertiary collimator
TCHS - scraper
TCLI - auxiliary injection collimator
TCLP - auxiliary physics collimator
 
3 K0L - magnet strength  
4 K1L - magnet strength  
5 S - longitudinal location
Zero location is IR1
Beam1 and beam2 defined on the same coordinate system
Possibility 1: Location defined at center of element
Possibility 2: Location defined at END of element
m
6 BETX - Horizontal beta function m
7 BETY - Vertical beta function m
8 DX - Horizontal dispersion m
9 X - Horizontal beam offset m
10 Y - Vertical beam offset m
11 ALFX - Horizontal alpha function  
12 ALFY - Vertical alpha function  
13 MUX - Horizontal phase advance 2 Pi
14 MUY - Vertical phase advance 2 Pi
15 DPX - Slope of horizontal dispersion  
16 PX - Horizontal momentum  
17 PY - Vertical momentum  
   
  TWISS files V6.5
   
  Overall ring description (generate IR3 or IR7 parts by extraction from this file)

(a) Squeezed optics (7 TeV)

Beam 1 - S defined at end of each element
Beam 2 - S defined at end of each element

Beam 1 - S defined at centre of each element
Beam 2 - S defined at centre of each element

(b) Injection optics (450 GeV - 7 TeV)

Beam 1 - S defined at end of each element
Beam 2 - S defined at end of each element

Beam 1 - S defined at centre of each element
Beam 2 - S defined at centre of each element

   
 

Drawings

Momentum cleaning IR3 (official drawing)

   
 

Betatron cleaning insertion IR7 (official drawing)

   
 

IMPORTANT - HOW TO USE these files:

(a) TWISS files with S defined at the end of each element:

Allows to get start point of each element (e.g. the S end location of the preceding element like for example a drift) and the end point (specified by the S value of the element itself).

The difference between start and end point gives the ACTIVE length of the element, the average of the two numbers the center point.

NOTE that the ACTIVE length is not the physical length of the element. A TCS collimator has an active length of 1.0m (length of flat part of graphite jaw), while the physical length of the jaw is 1.2m (including tapering) and the length of the tank with the jaws inside is 1.5m.

IMPORTANT: Several elements are only active on one beam (e.g. dipole correctors, collimators) others on both beams but with possibly different signs of magnetic fields. The full geometry is obtained by including all elements of beam1 and beam2 with the right properties (centering on different beam lines, right transverse dimensions, magnetic fields, ...). For example, energy deposition studies for beam1 must include beam2 collimators which are centered around beam2 but can intercept the parts of the showers escaping the beam1 pipes.

(b) TWISS files with S defined at the center of each element:

Gives the center point of the element. Drifts are often suppressed in output. Install geometrical element symmetrically around this point (referring to the center of the active length - compare notes above).

See note above on beam1 and beam2 elements!

 

Collimator data The collimator angle a specifies the orientation of the jaws in the transverse x-y plane.

DEFINITION:    

For each beam an x, y, z coordinate system is defined with the protons moving in z direction (NOTE that in this way different coordinate systems are defined for beam1 and beam2).

As any collimator only acts on one beam, the jaw orientations in the x-y plane are specified in the particular beam coordinate system. Then we define for each beam coordinate system:

a = angle between the jaw the vertical Y axis; in counter-clockwise direction

NOTE: The collimators will be installed in phases. Phase 1 is for initial installation, Phase 2 after a few years of operation and Phase 4 is optional in case that it is found to be required. For each collimator it is indicated for what phase it will be installed.

   
  The basic design parameters of different collimators, their locations and names are summarized on a different web page (Collimator Design and List).
   
 
Name a [deg]   Comments
IR7 beam1      
TCP.D6L7.B1 90.0   Primary collimator - two sided - phase 1
TCP.C6L7.B1 0.0   Primary collimator - two sided - phase 1
TCP.B6L7.B1 126.9   Primary collimator - two sided - phase 1
TCP.A6L7.B1 52.2   Primary collimator - two sided - phase 4
TCHSV.6L7.B1 90.0   Scraper - one sided - phase 1
TCHSH.6L7.B1 0.0   Scraper - one sided - phase 1
TCHSS.6L7.B1 136.6   Scraper - one sided - phase 1
TCSG.B6L7.B1 41.4   Secondary collimator - two sided - phase 4
TCSM.B6L7.B1 39.9   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.A6L7.B1 141.1   Secondary collimator - two sided - phase 1
TCSM.A6L7.B1 142.5   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B5L7.B1 143.5   Secondary collimator - two sided - phase 1
TCSM.B5L7.B1 141.6   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A5L7.B1 40.7   Secondary collimator - two sided - phase 1
TCSM.A5L7.B1 42.7   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.D4L7.B1 90.0   Secondary collimator - two sided - phase 1
TCSM.D4L7.B1 90.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.C4L7.B1 133.6   Secondary collimator - two sided - phase 4
TCSM.C4L7.B1 134.5   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.B4L7.B1 0.0   Secondary collimator - two sided - phase 1
TCSM.B4L7.B1 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A4L7.B1 134.6   Secondary collimator - two sided - phase 1
TCSM.A4L7.B1 135.7   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A4R7.B1 46.3   Secondary collimator - two sided - phase 1
TCSM.A4R7.B1 45.2   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B4R7.B1 135.9   Secondary collimator - two sided - phase 4
TCSM.B4R7.B1 136.4   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.A5R7.B1 37.3   Secondary collimator - two sided - phase 4
TCSM.A5R7.B1 39.2   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.B5R7.B1 141.5   Secondary collimator - two sided - phase 1
TCSM.B5R7.B1 139.6   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.C5R7.B1 90.0   Secondary collimator - two sided - phase 4
TCSM.C5R7.B1 90.0   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.D5R7.B1 51.4   Secondary collimator - two sided - phase 1
TCSM.D5R7.B1 53.3   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.E5R7.B1 130.5   Secondary collimator - two sided - phase 1
TCSM.E5R7.B1 128.5   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.6R7.B1 0.5   Secondary collimator - two sided - phase 1
TCSM.6R7.B1 0.5   Secondary collimator - two sided - metallic hybrid - phase 2
IR7 beam2      
TCP.D6R7.B2 90.0   Primary collimator - two sided - phase 1
TCP.C6R7.B2 0.0   Primary collimator - two sided - phase 1
TCP.B6R7.B2 127.5   Primary collimator - two sided - phase 1
TCP.A6R7.B2 51.0   Primary collimator - two sided - phase 4
TCHSV.6R7.B2 90.0   Scraper - one sided - phase 1
TCHSH.6R7.B2 0.0   Scraper - one sided - phase 1
TCHSS.6R7.B2 132.2   Scraper - one sided - phase 1
TCSG.B6R7.B2 41.2   Secondary collimator - two sided - phase 4
TCSM.B6R7.B2 39.7   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.A6R7.B2 141.3   Secondary collimator - two sided - phase 1
TCSM.A6R7.B2 142.8   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B5R7.B2 143.6   Secondary collimator - two sided - phase 1
TCSM.B5R7.B2 141.7   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A5R7.B2 40.6   Secondary collimator - two sided - phase 1
TCSM.A5R7.B2 42.5   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.D4R7.B2 90.0   Secondary collimator - two sided - phase 1
TCSM.D4R7.B2 90.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.C4R7.B2 133.6   Secondary collimator - two sided - phase 4
TCSM.C4R7.B2 134.5   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.B4R7.B2 0.0   Secondary collimator - two sided - phase 1
TCSM.B4R7.B2 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A4R7.B2 132.1   Secondary collimator - two sided - phase 1
TCSM.A4R7.B2 133.3   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A4L7.B2 42.1   Secondary collimator - two sided - phase 1
TCSM.A4L7.B2 41.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B4L7.B2 135.6   Secondary collimator - two sided - phase 4
TCSM.B4L7.B2 136.2   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.A5L7.B2 37.3   Secondary collimator - two sided - phase 4
TCSM.A5L7.B2 39.2   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.B5L7.B2 141.5   Secondary collimator - two sided - phase 1
TCSM.B5L7.B2 139.5   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.C5L7.B2 90.0   Secondary collimator - two sided - phase 4
TCSM.C5L7.B2 90.0   Secondary collimator - two sided - metallic hybrid - phase 4
TCSG.D5L7.B2 51.4   Secondary collimator - two sided - phase 1
TCSM.D5L7.B2 53.3   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.E5L7.B2 130.5   Secondary collimator - two sided - phase 1
TCSM.E5L7.B2 128.5   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.6L7.B2 0.5   Secondary collimator - two sided - phase 1
TCSM.6L7.B2 0.5   Secondary collimator - two sided - metallic hybrid - phase 2
IR3 beam1      
TCP.6L3.B1 0.0   Primary collimator - two sided - phase 1
TCHSH.6L3.B1 0.0   Scraper - one sided - phase 1
TCSG.5L3.B1 0.0   Secondary collimator - two sided - phase 1
TCSM.5L3.B1 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.4R3.B1 0.0   Secondary collimator - two sided - phase 1
TCSM.4R3.B1 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A5R3.B1 170.4   Secondary collimator - two sided - phase 1
TCSM.A5R3.B1 170.4   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B5R3.B1 11.4   Secondary collimator - two sided - phase 1
TCSM.B5R3.B1 11.4   Secondary collimator - two sided - metallic hybrid - phase 2
IR3 beam2      
TCP.6R3.B2 0.0   Primary collimator - two sided - phase 1
TCHSH.6R3.B2 0.0   Scraper - one sided - phase 1
TCSG.5R3.B2 0.0   Secondary collimator - two sided - phase 1
TCSM.5R3.B2 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.4L3.B2 0.0   Secondary collimator - two sided - phase 1
TCSM.4L3.B2 0.0   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.A5L3.B2 170.9   Secondary collimator - two sided - phase 1
TCSM.A5L3.B2 170.9   Secondary collimator - two sided - metallic hybrid - phase 2
TCSG.B5L3.B2 10.5   Secondary collimator - two sided - phase 1
TCSM.B5L3.B2 10.5   Secondary collimator - two sided - metallic hybrid - phase 2
   

Loss distributions / FLUKA input The multi-turn cleaning process for IR7 was calculated with the new collimation layout.

                   This is the relevant input for ongoing FLUKA studies!

NOTE:    For FLUKA use the files "coll_summary.dat" for gaps, rotation, tilt angles!
               For FLUKA use the files "inelast_coord.dat" for coordinates of inelastic interactions!
               For FLUKA use the Twiss files listed above, used for multi-turn tracking!
               Single-diffractive scattering protons are stopped from further tracking!
               Coordinates refer to coordinates of ideal closed orbit!

The following parameters were used for the simulation (beam1/beam2) with COLLTRACK V54:

   
 
Energy 7 TeV
Optics low beta
Settings primary collimators 6 s
Settings secondary collimators 7 s
Ensemble size 450000
Halo type pencil beam on primary collimator(s), 0.0025s impact parameter, 200mm spread in non-collimation plane
Number of turns 100 without diffusion
System errors none
   
Halo particles can impact at any of the three primary collimators. Here we consider an equal mix of losses at the three primaries, in other words 1/3 of the halo impacts at each of the three primary collimators. The real partition will strongly depend on the accelerator physics processes that lead to beam loss in the LHC and are not known a priori (e.g. tails in x, y).
   
  Updated on September 7th for individual files concerning x, y, skew halo (150k protons per run, otherwise as described above)!
   
  Link to overview file "coll_summary.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
  Note: Definition of tilt angle Tilt is defining the angle between the straight line (the ideal orbit line) and the jaw surface. The two jaws can have independent tilts. The gap is always kept constant and is defined as the distance from the closest point of jaw 1 to the closest point of jaw 2, with respect to the reference straight line and taken all along the jaw length. In other words: Jaws are always rotated around one of its end points with the other end point moving away from the straight reference line. Such the minimum gap width and center position is not changed from tilt angles.
   
  Link to coordinates of inelastic interactions "inelastic_coord.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
  Here we provide access to additional output files that are not needed for FLUKA input but might be of general interest:
   
  Link to cleaning efficiency result "efficiency.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
  Link to histogram output "histogram.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
  Link to survival versus turn data "survival.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
  Link to file of beta function, gaps, beam size "collgaps.dat":
Beam 1 Beam2
  vertical horizontal skew vertical horizontal skew
   
Note that not all protons interact inelastically over the 100 turns, but most (about 90%) do. The sum over "nabs" is therefore smaller than the size of the tracked particle ensemble.

NOTE: Collimators with zero length and zero number of impacts are not used or not installed (later phases)!

   

Collimation gaps IR7 Collimation gaps are a function of the beam energy, the available aperture in the machine, the cleaning efficiency, the quench limits, etc.

For FLUKA: Better use the file "coll_summary.dat" that now contains the same information as the "collgaps.dat" file!

Here we list the gap for the following conditions:.

   
 
Energy 7 TeV
Machine state Nominal parameters
Optics low beta, beta*=0.55m
Settings primary collimators 6 s
Settings secondary collimators 7 s
System errors none
   
  Note: Gaps are listed for collimators from all phases. Please use the information listed above to identify the collimators used in any given phase!
   
Name angle betax betay halfgap Material Length sigx sigy
[rad] [m] [m] [mm]   [m] [mm] [mm]
               
TCP.D6L7.B1 1.57 158.83 78.29 1.19 C 0.20 282.65 198.44
TCP.C6L7.B1 0.00 150.49 82.79 1.65 C 0.20 275.13 204.07
TCP.B6L7.B1 2.22 142.43 87.52 1.39 C 0.20 267.66 209.81
TCP.A6L7.B1 0.91 134.65 92.47 1.40 C 0.00 260.24 215.67
TCSG.B6L7.B1 0.72 45.37 208.88 1.70 C 0.00 151.07 324.14
TCSM.B6L7.B1 0.70 42.50 217.83 1.68 CU 0.00 146.20 331.01
TCSG.A6L7.B1 2.46 39.90 227.01 1.67 C 1.00 141.66 337.91
TCSM.A6L7.B1 2.49 37.57 236.41 1.65 CU 0.00 137.47 344.84
TCSG.B5L7.B1 2.51 159.98 166.56 2.00 C 1.00 283.67 289.45
TCSM.B5L7.B1 2.47 172.69 156.07 2.02 CU 0.00 294.73 280.19
TCSG.A5L7.B1 0.71 185.94 145.97 2.04 C 1.00 305.83 270.97
TCSM.A5L7.B1 0.75 199.73 136.26 2.05 CU 0.00 316.96 261.80
TCSG.D4L7.B1 1.57 332.83 68.87 1.30 C 1.00 409.16 186.12
TCSM.D4L7.B1 1.57 340.94 65.37 1.27 CU 0.00 414.11 181.33
TCSG.C4L7.B1 2.33 292.23 61.68 2.06 C 0.00 383.39 176.14
TCSM.C4L7.B1 2.35 283.05 63.57 2.06 CU 0.00 377.32 178.81
TCSG.B4L7.B1 0.00 139.66 130.95 1.86 C 1.00 265.05 256.65
TCSM.B4L7.B1 0.00 134.03 136.02 1.82 CU 0.00 259.65 261.57
TCSG.A4L7.B1 2.35 128.58 141.24 1.82 C 1.00 254.31 266.54
TCSM.A4L7.B1 2.37 123.30 146.63 1.82 CU 0.00 249.04 271.58
TCSG.A4R7.B1 0.81 118.19 152.17 1.83 C 1.00 243.83 276.66
TCSM.A4R7.B1 0.79 113.26 157.86 1.83 CU 0.00 238.69 281.79
TCSG.B4R7.B1 2.37 47.63 335.45 2.15 C 0.00 154.79 410.77
TCSM.B4R7.B1 2.38 46.95 344.95 2.16 CU 0.00 153.67 416.55
TCSG.A5R7.B1 0.65 103.42 299.58 2.08 C 0.00 228.08 388.19
TCSM.A5R7.B1 0.68 112.45 283.31 2.11 CU 0.00 237.83 377.50
TCSG.B5R7.B1 2.47 121.93 267.51 2.10 C 1.00 247.65 366.82
TCSM.B5R7.B1 2.44 131.86 252.20 2.12 CU 0.00 257.54 356.17
TCSG.C5R7.B1 1.57 188.30 182.88 2.12 C 0.00 307.76 303.29
TCSM.C5R7.B1 1.57 200.94 170.46 2.05 CU 0.00 317.92 292.81
TCSG.D5R7.B1 0.90 214.04 158.52 2.11 C 1.00 328.12 282.38
TCSM.D5R7.B1 0.93 227.59 147.07 2.08 CU 0.00 338.34 271.98
TCSG.E5R7.B1 2.28 241.59 136.09 2.11 C 1.00 348.59 261.64
TCSM.E5R7.B1 2.24 256.04 125.60 2.08 CU 0.00 358.87 251.35
TCSG.6R7.B1 0.01 336.03 47.36 2.88 C 1.00 411.12 154.35
TCSM.6R7.B1 0.01 324.80 47.38 2.83 CU 0.00 404.19 154.37

 

Name angle betax betay halfgap Material Length sigx sigy
[rad] [m] [m] [mm]   [m] [mm] [mm]
               
TCP.D6R7.B2 1.57 159.15 78.19 1.19 C 0.20 282.93 198.31
TCP.C6R7.B2 0.00 150.80 82.70 1.65 C 0.20 275.41 203.96
TCP.B6R7.B2 2.23 142.73 87.44 1.40 C 0.20 267.94 209.72
TCP.A6R7.B2 0.89 134.93 92.41 1.41 C 0.00 260.52 215.60
TCSG.B6R7.B2 0.72 45.48 209.24 1.69 C 0.00 151.25 324.42
TCSM.B6R7.B2 0.69 42.59 218.22 1.68 CU 0.00 146.37 331.31
TCSG.A6R7.B2 2.47 39.98 227.43 1.67 C 1.00 141.81 338.23
TCSM.A6R7.B2 2.49 37.65 236.87 1.65 CU 0.00 137.61 345.17
TCSG.B5R7.B2 2.51 159.59 167.17 2.00 C 1.00 283.32 289.98
TCSM.B5R7.B2 2.47 172.27 156.66 2.02 CU 0.00 294.37 280.71
TCSG.A5R7.B2 0.71 185.49 146.53 2.04 C 1.00 305.45 271.49
TCSM.A5R7.B2 0.74 199.24 136.80 2.05 CU 0.00 316.57 262.31
TCSG.D4R7.B2 1.57 332.04 69.20 1.31 C 1.00 408.68 186.57
TCSM.D4R7.B2 1.57 340.13 65.69 1.27 CU 0.00 413.62 181.77
TCSG.C4R7.B2 2.33 291.57 61.90 2.05 C 0.00 382.96 176.45
TCSM.C4R7.B2 2.35 282.42 63.78 2.05 CU 0.00 376.90 179.10
TCSG.B4R7.B2 0.00 151.17 121.23 1.93 C 1.00 275.75 246.94
TCSM.B4R7.B2 0.00 145.21 125.97 1.89 CU 0.00 270.26 251.72
TCSG.A4R7.B2 2.31 139.43 130.86 1.82 C 1.00 264.83 256.56
TCSM.A4R7.B2 2.33 133.82 135.90 1.82 CU 0.00 259.44 261.46
TCSG.A4L7.B2 0.74 99.40 175.58 1.82 C 1.00 223.61 297.19
TCSM.A4L7.B2 0.72 95.18 181.88 1.81 CU 0.00 218.81 302.46
TCSG.B4L7.B2 2.37 47.72 334.40 2.15 C 0.00 154.92 410.13
TCSM.B4L7.B2 2.38 47.04 343.86 2.16 CU 0.00 153.82 415.89
TCSG.A5L7.B2 0.65 103.64 298.43 2.08 C 0.00 228.32 387.44
TCSM.A5L7.B2 0.69 112.68 282.21 2.11 CU 0.00 238.07 376.76
TCSG.B5L7.B2 2.47 122.17 266.46 2.10 C 1.00 247.90 366.10
TCSM.B5L7.B2 2.44 132.12 251.20 2.12 CU 0.00 257.79 355.46
TCSG.C5L7.B2 1.57 188.62 182.10 2.12 C 0.00 308.02 302.65
TCSM.C5L7.B2 1.57 201.28 169.73 2.05 CU 0.00 318.19 292.19
TCSG.D5L7.B2 0.90 214.39 157.83 2.11 C 1.00 328.39 281.76
TCSM.D5L7.B2 0.93 227.95 146.42 2.08 CU 0.00 338.61 271.38
TCSG.E5L7.B2 2.28 241.96 135.49 2.11 C 1.00 348.87 261.05
TCSM.E5L7.B2 2.24 256.43 125.03 2.08 CU 0.00 359.14 250.78
TCSG.6L7.B2 0.01 336.41 47.17 2.88 C 1.00 411.36 154.04
TCSM.6L7.B2 0.01 325.16 47.20 2.83 CU 0.00 404.42 154.08
   
 
 

  RWA, Thursday, 05. April 2012 11:07 +0200