Overview of Shower Calculations on the Material Choice

Vasilis.Vlachoudis@cern.ch LHC Collimation Working Group

LTC Meeting Wed 25/6/2003

Accident scenarios

Materials choice:

- not driven so much by the standard collimation
- but rather by the faulty operations or malfunctions
- Worst Accident scenarios
 - Due to a spontaneous rise of one of the extraction kicker modules during the coast, part of the 7 TeV/c beam is spread across the front of a collimator jaw.
 - Faulty kick by the injection kicker where a full batch of protons hit the front of a collimator jaw at 450 GeV/c
- Very fast absorptions of part of the proton energy
 - Instantaneous temperature rise
 - Thermally induced stresses (overheating/melting)
- \Rightarrow Limits material choice which can be used and still be compatible with other machine requirements.

Reference: LHC Project Report 599, LHC Project Note 293

Tools

• FLUKA-2002 (3)

A.Fasso, A.Ferrari, J.Ranft, P.R.Sala Proceedings of the Monte Carlo 2000 Conference, Lisbon, Oct. 23-26 2000, Springer-Verlag Berlin, p 955-960 (2001)

• Single scattering treatment

- MCS can produce artefacts when crossing of an interface and the small "grazing" angle is important compared to a typical scattering angle
- MCS not suitable for surface roughness
- Important for the Slowcase
- ^{(⊗} Increases computation time (×500)
- Ions DPMJET-2.53

J.Rauft, S.Roesler, R.Bugel

Material Selection

- Low Z material must be used
- Only Graphite and Beryllium can be considered
- Even $100\mu m$ Copper coating is not possible!
- Most of the cascade escapes the collimator
- EM contribution very small

Material	Density g/cm³	Max Energy GeV/cm ³	Max Temp °K approx.	Escaping %	EM %
Aluminum	2.7	5.3×10 ¹³	~2700	88.8	9
Beryllium	1.848	0.09×10 ¹⁴	310	97	1
Copper	8.96	7 ×10 ¹⁴	> 5000	34.4	52.4
Graphite	1.77	0.13×10 ¹⁴	800	96.4	1.8
Graphite + Cu 100µm	1.77+8.9	1.6×1014 on Cu	800 C, > 5000 Cu	94.1	3.9
1cm Graphite + Copper	1.77+8.9	0.1×10 ¹⁴	800 C, 450 Cu	94.5	3.8
Titanium	4.54	1.7×10 ¹⁴	> 5000	79.5	16.7

FLUKA simulations for the accident case at 7 TeV

Max Energy per mass-length

Single module pre-fire with retriggering of 14 after $1.3\mu s$

Total:8 bunchesRange: $5\sigma - 10\sigma$ Proton/Bunch: 1.05×10^{11} prTotal: 9×10^{11} pr

In rare case of injection errors a full batch of Intensity: 3.2×10¹³ p @ 450 GeV/c RMS radius: 1.0 mm (round profile) May hit the front face of the collimator

Normal Collimation at 7 TeV/c

• 2 cases studied: Perfect Alignment, 5 μrad misalignment

7 TeV

- 100cm long graphite "ideal" collimators (no surface roughness)
- Use of single scattering in the sensitive regions of the cascade
- Interacting protons: 4×10^{11} p/s (lifetime 0.2 h) for 10 s
- Impact parameter: 0-200nm (σ_v =0.2 mm)
- Energy:

Perfect Alignment

Beam parallel to Z axis Interacting protons: 0.5934/p Interaction length: 42.05cm

 $1 - e^{-100/42.05} = 0.907$

Total Power: 1785 W

5 µrad Misalignment

Traversal length: 2cm Interacting protons: 0.05209/p Interaction length: 42.05cm $1 - e^{-2/42.05} = 0.04645$ Total Power: 2960 W

Integrated power density over a square area per unit length Z (cm) per gram per 4×10^{11} int. protons [Integration Area: X: 0-1 cm Y: $\pm 50 \mu$ m, $\pm \frac{1}{2}$ mm, $\pm \frac{1}{2}$ cm] Heating is higher on the badly aligned compared with the perfect one!

Ions Irregular Beam Dump

Ions Normal operation

Normal Collimation

Bunches:592Interacting:5.8 107 Pb+/sBunch spacing:100 ns

5 μrad Misalignment Traversal length: 2cm Interacting Ions: 0.44/Pb⁺ Interaction length: 3.46cm

 $1 - e^{-2/3.46} = 0.439$ Total Power: 7 W

Ions 2-3 Orders of magnitude smaller energy deposition!

A fraction of Ions loses a few nucleons and enters back to the beam line

Summary

- Low Z material must be used
- Only Graphite and Beryllium can be considered
- Even $100\mu m$ Copper coating is not possible!
- Sensitive to alignment, surface roughness
- Energy deposition from Ions is very small!
- Safety factor in calculations
 - Accident case: 30%
 - Slow case: factor ×2-3