The LHC Ring Collimation System

Presented by O.Aberle AB/ATB Targets & Dumps Section

20.11.2003

Outline

- 1. Specifications
- 2. Design
- 3. Prototype testing
- 4. Integration
- 5. Outlook

Specifications

			TCT 18 100 cm 20 cm Cu (high Z) 65x50 mm H / V 60 mm 20 mm 250 µm 125 µm				
	ТСР	TCS	TCT				
Numbers	11	33	18				
Jaw length:	20 cm	100 cm	100 cm				
Jaw tapering:	20 cm	20 cm	20 cm				
Jaw material:	C	C	Cu (high Z)				
Jaw dimensions:	80x25mm	80x25mm	65x50 mm				
Jaw coating:	~ µm Cu	∼ µm Cu					
Jaw orientations:	any	any	H / V				
Jaw resistivity	minimal	minimal					
Max. opening	60 mm	60 mm	60 mm				
Minimum full gap:	0.5 mm	0.5 mm	20 mm				
Knowledge of gap:	50 µm	50 µm	250 µm				
Flatness:	25 µm	25 µm	125 µm				
Surface roughness:	< 1 µm	1.6 µm	1.6 µm				
Jaw position control:	10 µm	10 µm	10 µm				
Jaw angle control:	15 µrad	15 µrad	15 µrad				
Reproducibility:	20 µm	20 µm	100 µm				
Heat load:	3 kW	10 kW					
Annually dose rate	1 MGy	1 MGy					
Max. oper. temperature:	50°C	50°C					
Outbaking temperature:	250°C	250°C	250°C				

Jaw material

		Size	Orientation	Resistivity [μΩ m]	known
				bakeout (1000°C for 2 h)	values
Graphite					
SGL	R 4550	Prim.	iso	15	13
		Sec.	iso		
	R8650	Prim.	iso	15	14
	R8710	sample	iso	16	14
	R8710Cu	sample	iso	6	3
	Sigrasic	sample	iso	375	-
Росо	ZEE	sample	iso	44	-
	PLS	Prim.	iso	-	12.2
	FM	Sec.	iso	-	12.4
	DFP	Sec.	iso	-	15
CFC					
Tatsuno	AC100	Prim.	х-у	11-12.5	7
	AC200	Prim.	x	13.5-18	7
		Sec.	х-у	14	7
	AC150		x-y	10	7
SGL	1001Z	sample	x-y	-	6
	1501Z	sample	x-y	-	6
Snecma	N11	"Prim."	x-y	6	-
	NB31	samples	x-y-z	9	-

Base for calculations: 14 μΩm

Resistivity Measurements CFC with as low as 6 $\mu\Omega$ m found

20.11.2003

Jaw material

AS DE O			Size	Flatness bake out (1000°C	for 2 h)
	Graphite			before	after
	SGL	R 4550	Sec.	0.2/0.25	
			Sec.	0.04/0.1	
			Prim.	0.05/0.01	
		R8650	Prim.	0.005/0.015	
		R8710Cu	sample		
		Sigrasic	sample		
0					
	CFC				
	Tatsuno	AC100	Prim.	0.01/0.05	0.02/0.05
	TatSuno	AC200	Prim.	0.015/0.03	0.02/0.03
			Sec.		-
		AC150	Sec.	0.11/0.117	-
	SGL	1001Z	sample		-
		1501Z	sample		-
			•		

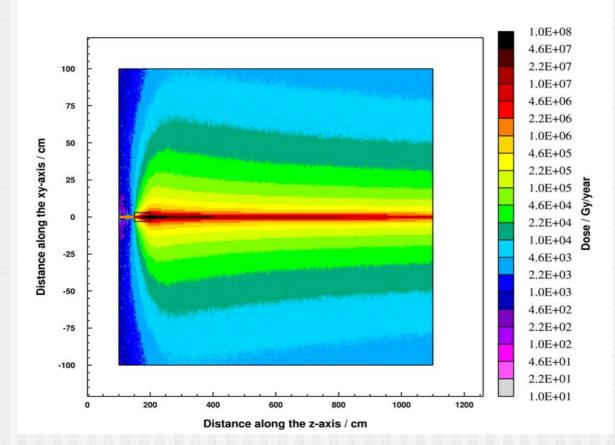
Flatness

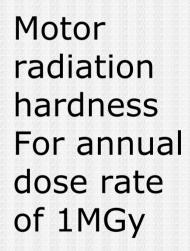
20.11.2003

Snecma N11

NB31

"Prim."


samples

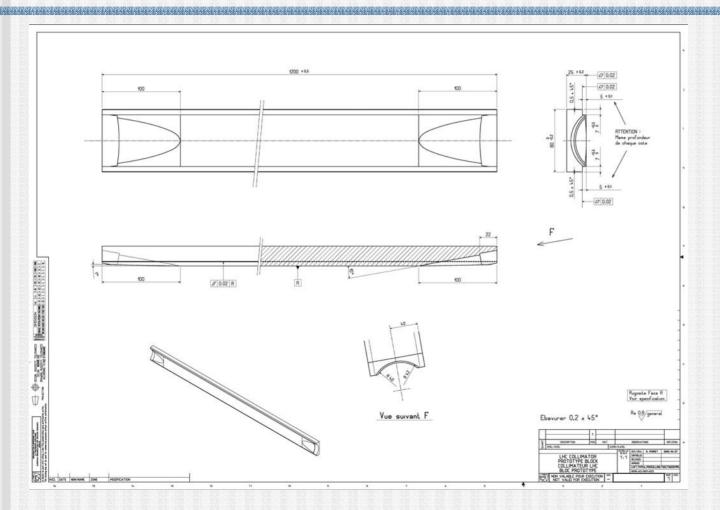

0.01/0.05

0.01/0.02

Jaw material

Simulated Dose After One Year Of Operation (C Target)

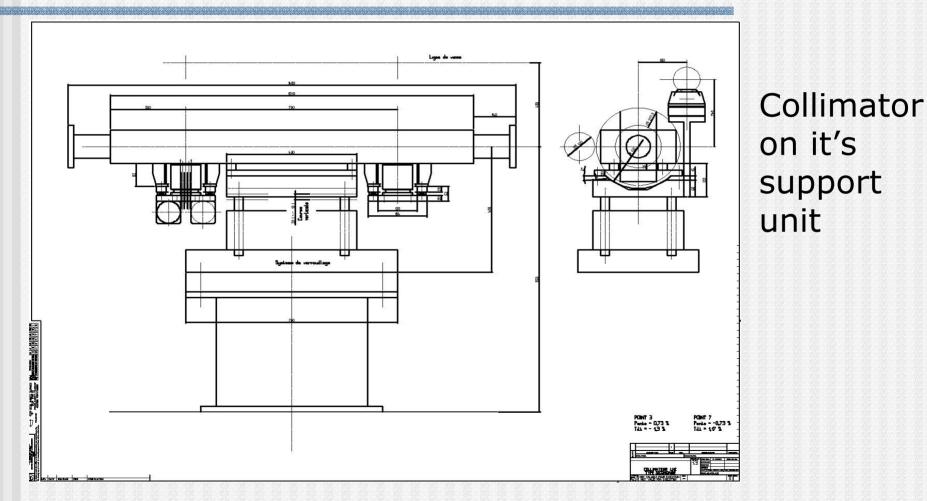
20.11.2003


Prototype design

- For reasons of delays and budget a solution as simple and as robust as possible is envisaged.
- Experience and expertise (e.g. LEP) from different groups and divisions involved.
- A team in EST (A. Bertarelli, R. Perret, M. Mayer) is in charge to design and produce the different collimator prototypes, the first TCS for May 2004.

Prototype design

- Jaw: Two carbon collimator jaws (secondary collimator, length = 1.2 m). The active length is 1 m, parts of the tapering are machined on each side of the block.
- Motion: The required high precision is transmitted via stepping motors through a pair of bellows from outside of the vacuum.
- Cooling: Separate cooling circuit. Local cooling units


Prototype jaw (TCS)

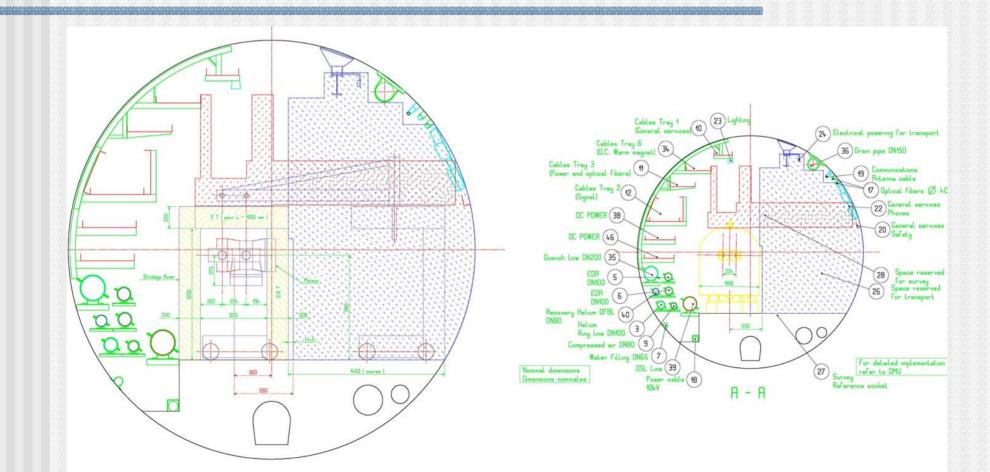
Collimator jaw with tapering

20.11.2003

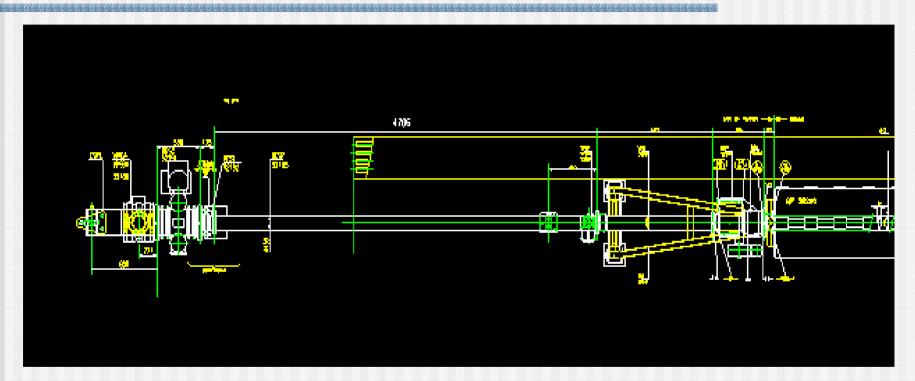
Prototype (TCS)

20.11.2003

AB-LTC Technical Review


10

Prototype cross section



Collimator cross section with spare surface and motorisation. Outer envelope: 450 x 350 mm

Tunnel space constraints

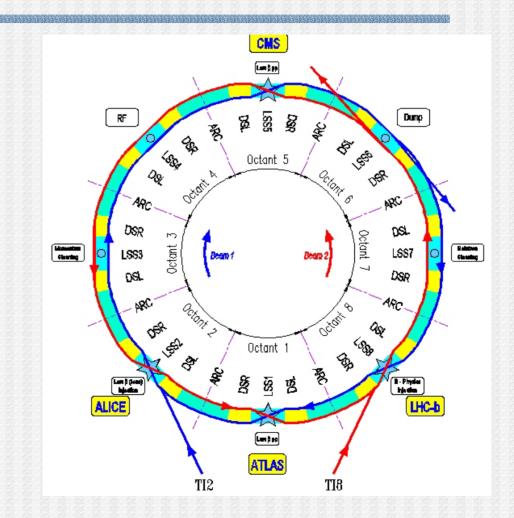
Collimator test

Location at UF 522: Space available: 4.7 m

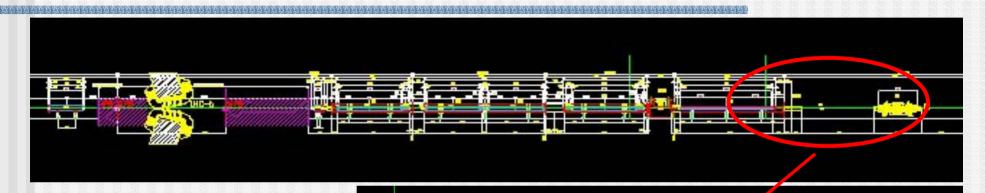
20.11.2003

Robustness test

Location in TT40 in front of the TED



Planning SPS tests


	Qtr 4	1, 200 3	}	Qtr 1	, 2004		Qtr 2	, 2004		Qtr 3	2004		Qtr 4	, 200
Task Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	No
SPS tests														
SPS change request														
water connections prepared		L.												
installation of cables for power supply and controls														
support unit installed														
controls/electronics														
Drawings														
Sensoring, monitoring and controls														
Manufacturing														
Tests and commisioning														
Installation of collimator and robustness test											. ♠_			
Tests														
painting														

Positions

TCP and TCS are grouped in IR 3 and IR 7.

Positions

TCT collimators around the IP 1, 2, 5 and 8. All positions are ok with two exceptions in IP2 and IP8

AB-LTC Technical Review

20.11.2003

Outlook

Series production:

- Final assembly foreseen at CERN (B252)
 -space for testing and storage needed (100m²).
- A quality control system and the critical acceptance points will be defined as a result of the prototype tests.
- Interferences for installation and integration have to be checked.
- The services for installation as well as space requirements have to be done.