LHC Ring Collimation – Overview –

R. Assmann, AB/ABP for the LHC Collimation Project

Included in overview

- Phases of LHC collimation with timeline
- Completing phase 1 collimation by 2007
 - Components with spares
 - Budget preliminary estimate and risks
 - Manpower
 - Schedule 2003/2004
 - IR7 layout: optics and cleaning design
 - Prototyping and tests
- Radiation and shielding
- Schedule beyond 2004

Main work flow

LHC Collimation

Project

Logic behind the phased approach

No single collimator solution corresponds to all LHC requirements:

- High robustness (withstand LHC beam)
- Low impedance (don't disturb LHC beam)
- High efficiency (allow high beam intensities in SC ring)

Conflicting requirements →

More flexible approach required with specific sub-systems for **achieving nominal and ultimate performance** (hybrid sec. collimators)

Benefiting from natural evolution of LHC beam parameters:

STAGE the design, production & installation of LHC collimators

Phase 1: Compatible with injection&ramping up to ultimate intensities and with requirements of commissioning and early 7 TeV physics run! (accepting to run at the impedance limit at 7 TeV, fixed with phase 2)

Timeline for collimation phases

(without commissioning of the system – included in project mandate)

			20	003			200)4			200	5			2006	5			2007			200	8			200	9		201	0		
ID	Task Name	Q4	Q	1 Q2	Q3	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q	4	Q1 Q2	Q3	Q4	Q1	Q2 (3	Q4	Q1	Q2	Q3 Q4	Q1	Q2	Q3 (Q4
1	Project set-up																												LHC	Collin	nation	
2	Conceptual design																														Project	
3	Phase 1																													66	:	
4	Phase 2																															
5	Phase 3																														CERN	
6	Phase 4 (optional)																															

Timeline for phase 1 is on the critical path since start of the project: design,

prototyping, production, installation of a big and challenging system in 4 years.

Phase 1 is being realized...

- with a collimator concept as robust as possible and as simple as possible
- relying as much as possible on available experience
- completed as fast as possible
- for a quite low price
- with **50 × better efficiency** than required at other machines (tighter tolerances)

Phased approach gives us room for learning and developing the LHC collimation.

Timeline for different phases extends until 2010/11.

Start phase 2 design early to allow for nominal performance with advanced design (wait until phase is in series production)!

Phasing of ring collimators (including spares)

Ultimate efficiency:

With **optional** "**Phase 4**" (not required for nominal – to be confirmed for new optics).

Completing Phase 1 collimation by 2007

Highest priority:Compatibility with LHC schedule without compromising
the system performance (...too much)
(remember: in phase 1 we require 50× advancement in
cleaning efficiency beyond requirements elsewhere)

Strategy:Rely on solutions that worked before with similar
mechanical specifications (resisting the temptation
to just copy without verifying solutions are OK)!

- → Use to maximum extent LEP solutions (no fancy stuff)
- → EST leads mechanical design and prototyping (LEP designer)
- → Strong support from AB division for mechanical design
- → See O. Aberle for details...

Reserve sufficient time for experimental tests:

jaw materials, vacuum, heating and cooling, flatness, prototype tests (SPS, TT40)

Quality assurance is crucial (0.2 mm deformations over 1m jaw \rightarrow useless secondary collimator \rightarrow factor 10 in allowable intensity easily lost)

Collimators for Phase 1 (including spares)

Concentrating on design of secondary collimators (TCS):

➔ most components and most difficult!

TCS design will serve as basis for TCP, TCSP, TCLP, and TCLI designs!

Collimation project for Phase 1

- Budget and risks
- Manpower
- Schedule

Budget LHC Collimation – Phase 1 –

	Number o	Total cost		
	machine	spares	[kSFr]	[kSFr]
ТСР	8	3	103	1133
TCS	30	3	133	4389
ТСТ	16	2	133	2394
TCLI	4	1	133	665
TCLP	4	1	133	665
TCSP	6	1	63	441
General costs				2247
Installation/align				
m./transp./	68		5	340
Total	68	11		12274

- Preliminary budget estimate (final estimate only after building prototype).
- Budget was allocated by LHC management (to be put into EVM).
- Prices appear favorable if compared with costs of existing (simpler) designs (SNS).

Budget risks phase 1

- The carbon jaws can be fixed on a metallic cooling support with a **technique of clamping**. If state-of-the-art techniques (as used for the ITER fusion project) need to be applied significant cost increase would result (on the order of 2-3MSFr).
- The cost for motors, electronics, and local control is **based on the LEP technology and prices.** If this technology cannot be used (e.g. due to higher radiation at LHC) significant cost increase can result.
- It is assumed that no local shielding is put at the collimators. Otherwise advanced handling tools for shielding and collimators might be required with a significant increase in budget.
- A flexible collimator design is assumed (collimators can be used for any plane), resulting in a minimum number of spares. More spares for less flexible designs would cause an increase in budget.
- It is assumed that 5 out of 8 prototypes to be built **can be installed into the LHC** as collimators. Prototyping cost therefore takes into account only 3 components.
- Significant R&D for phase 2 collimators is done by SLAC as part of the US-LHC collaboration (LARP). Additional budget would be required if this R&D work would need to be performed at CERN.
- Production and installation cost for phase 2 and phase 3 collimators is not included. Phase 2 collimators need to be installed after one year of LHC operation. However, the costs of services for phase 2 and 3 are included, as they should be installed for day 1 of LHC (minimizing human intervention in IR3 and IR7).

Project **Manpower Collimation Project** CERN 2003 FTE 8 2004 7-6-5 4 3w/o 2ions 1-0 HW sim/design/exp proj. management 2003 1.6 4.8 0.5 2004 4.5 8 0.5

LHC Collimation

 Manpower:
 6.9 FTE (2003) → 13.0 FTE (2004)
 1.0 from PhD student

 AB-division:
 3.3 FTE (2003) → 6.9 FTE (2004)
 student

Total: **27 persons involved from 9 groups** in 2004

Average FTE/person: 0.3 (2003) → 0.5 (2004)

Manpower status

- We are still **building up manpower** to tackle the collimation challenge (almost double in 2004).
- About 50% of manpower from AB.
- Still most resources on simulation/system design:

This illustrates the big challenge of non-trivial beam loss signatures. 2004: Shielding in IR3 and IR7 is a major work challenge (see later). Still not at all easy to meet deadlines!

- Hardware resources tripling next year (stronger increase than simulation).
 Healthy sign: Further increase might be required as we start to produce hardware!
- Average FTE/person goes from 0.3 to 0.5: Average person works 50% of its time on collimation! Healthy development! Still struggling with other priorities!

Schedule

- Collimation project not in steady state.
- Schedule must adapt to available manpower, free resources, priorities, encountered difficulties,
- No time reserve in schedule.

Emphasis in 2003:

- Put resources together to make quick progress
- Develop a coherent picture of collimation in the LHC rings
- Fix **basic technical design parameters** (materials, lengths, ...)
- First round of new layout in IR3 and IR7
- Get mechanical design going on most difficult collimator

Schedule and tasks defined in detail until end of 2004...

IR7 layout: Optics and cleaning design

Goal: Space allocations for secondary collimators (2 beams×16×2m), phase 2 hybrid collimators (2 beams×16×2m) with all upgrade phases.

Keep good cleaning efficiency.

Minimize impedance.

Decision for proposal: Ha

Has been taken 14.11.03. Being finalized in optics team.

Space in IR7

"RBEND"	"MBW.A6L7.B1"	376.7491258	Dogleg L
2TCS + 1TCS	= 12m 24.7m		
"QUADRUPOLE"	"MQWA.E5L7.B1"	405.1216258	
"QUADRUPOLE"	"MQWA.A5L7.B1"	423.6216258	Q5 L All space included!
2TCS + 5TCS	= 28m 35.9m		
"QUADRUPOLE"	"MQWA.E4L7.B1"	463.2116258	40% of space in
"QUADRUPOLE"	"MQWA.D4L7.B1"	466.9	collimation
1TCS	= 4m 5.0m		
"QUADRUPOLE"	"MQWA.C4L7.B1"	475.6	Sufficient space for
"QUADRUPOLE"	"MQWA.A4L7.B1"	486.7116258	Q4 L correctors, BPM's,
~ 5TCS + 5TCS	= 40m 117.3m		
"QUADRUPOLE"	"MQWA.A4R7.B1"	607.6636258	Lowest free space
"OUADRUPOLE"	"MOWA.C4R7.B1"	618.8	Q4R between quads:
1 TCS	$= 4m \qquad 5.0m$	01000	7.9 m
"OUADRUPOLE"	"MOWA.D4R7.B1"	627.5	Lowest free space
		631 1636258	Q4R with collimator in
	- 29m 35.9m	051.1050250	between modules:
			1.0m
"QUADRUPULE"	"MQWA.ASR/.BL"	6/0./536258	Q5
"QUADRUPOLE"	"MQWA.E5R7.B1"	689.2536258	
1TCS + 2TCS	= 12m 24.6m		
"RBEND"	"MBW.A6R7.B1"	717.6261258	Dogleg K

Radiation & collimator shielding

The LHC management has confirmed its policy to limit environmental impact of LHC operation to less than the low 10μ Sv/y limit.

This implies that **shielding will be installed in IR3/IR7**, also on the collimators, if required to achieve this goal (also implementing ventilation changes).

Important trade-off in radiation protection in IR3/7:

Detailed shielding studies and proposals middle of next year between TIS/RP, collimation project, vacuum, ...!

Just a few slides as a warning!

Collimator integration without shielding:

Collimator integration with shielding:

Example of 20cm shielding

(illustrative only, no design)

Collimator design for SPS prototypes continues w/o shielding.

Start thinking about LHC design now:

- Motors (inside/ouside)
- Moving mechanism
- Handling tools (crane)

Decide about shielding details middle of next year! (start study Feb04)

Impact on collimator design and insertion layout! (integration)

→ Next AB project review!?

Prototyping & Tests

Prototyping and tests are very important in view of the challenges:

- Build a prototype for every type of collimator!
- Assume **8 prototypes** (already for TCS + 1 other overhead).
- Budget assumes that 5 of them can be installed into the LHC!

Biggest challenge tackled first (in terms of tolerances, dimensions, flexibility):

- Secondary collimators TCS with 1.2 m jaw (details O. Aberle).
- Two prototypes to be **completed in May 2004** (EST).
- Thorough program of testing and design verification for TCS prototypes:
 - Laboratory measurements (see planning)
 - Beam measurements (TT40: robustness, SPS: functionality/impedance)

Schedule beyond middle 2004

More complete schedule will be prepared in January 2004:

- 1) Mechanical design of TCP, TCSP, TCT, TCLI, TCLP: Possible after completing design of TCS in 2/04...
- 2) Prototyping beyond the SPS test requirements: Possible after delivering TCS prototypes in 5/04...
- **3)** Feedback from TCS tests, design optimizations After SPS tests in 11/04...
- **4) Preparation for series production**: Starting in 1/04...

... later in 2004 (knowing about local shielding)...

- 5) Schedule for ordering components, assembly, ...
- 6) Schedule of test and quality assurance for series production
- 7) Installation schedule

Still strong uncertainties until end of 2004:

- Delivery delays
- Assembly and testing
- Shielding and additional handling tools

Conclusion

- Project for LHC collimation is gathering momentum, relying on good support from about 9 groups at CERN.
- A path to nominal LHC performance has been defined.
- Project is not in steady state → dynamic process (not everything is defined, scheduled, or documented in detail → adjust to reality).
- However, documentation in LHC design report...
- Advancing on **freezing layout** (IR7 optics and cleaning design completed) with good LHC performance reach.
- Advancing on mechanical design and prototyping.
- Detailed work tasks and schedule for 2003/2004 has been defined, including thorough testing without and with beam.
- New budget has been requested and allocated.
- Local shielding imposes risks for changes in design, budget, schedule.
- Next version of schedule (more complete) in Feb2004 and Nov2004?
- We will have a reasonably well performing Phase 1 collimation in 2007, but we cannot (yet) relax!
- → O. Aberle will present the engineering details...